Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrgmulrss2 | Structured version Visualization version GIF version |
Description: The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
Ref | Expression |
---|---|
idlsrgmulrss2.1 | ⊢ 𝑆 = (IDLsrg‘𝑅) |
idlsrgmulrss2.2 | ⊢ 𝐵 = (LIdeal‘𝑅) |
idlsrgmulrss2.3 | ⊢ ⊗ = (.r‘𝑆) |
idlsrgmulrss2.5 | ⊢ · = (.r‘𝑅) |
idlsrgmulrss2.6 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
idlsrgmulrss2.7 | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
idlsrgmulrss2.8 | ⊢ (𝜑 → 𝐽 ∈ 𝐵) |
Ref | Expression |
---|---|
idlsrgmulrss2 | ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgmulrss2.1 | . . 3 ⊢ 𝑆 = (IDLsrg‘𝑅) | |
2 | idlsrgmulrss2.2 | . . 3 ⊢ 𝐵 = (LIdeal‘𝑅) | |
3 | idlsrgmulrss2.3 | . . 3 ⊢ ⊗ = (.r‘𝑆) | |
4 | eqid 2758 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
5 | eqid 2758 | . . 3 ⊢ (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) | |
6 | idlsrgmulrss2.6 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | idlsrgmulrss2.7 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
8 | idlsrgmulrss2.8 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐵) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | idlsrgmulrval 31187 | . 2 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) = ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽))) |
10 | rlmlmod 20058 | . . . . 5 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) |
12 | eqid 2758 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | 12, 2 | lidlss 20064 | . . . . 5 ⊢ (𝐽 ∈ 𝐵 → 𝐽 ⊆ (Base‘𝑅)) |
14 | 8, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ⊆ (Base‘𝑅)) |
15 | 12, 2 | lidlss 20064 | . . . . . 6 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ⊆ (Base‘𝑅)) |
16 | 7, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) |
17 | 8, 2 | eleqtrdi 2862 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) |
18 | 12, 4, 5, 6, 16, 17 | ringlsmss2 31118 | . . . 4 ⊢ (𝜑 → (𝐼(LSSum‘(mulGrp‘𝑅))𝐽) ⊆ 𝐽) |
19 | rlmbas 20048 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
20 | rspval 20046 | . . . . 5 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
21 | 19, 20 | lspss 19837 | . . . 4 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐽 ⊆ (Base‘𝑅) ∧ (𝐼(LSSum‘(mulGrp‘𝑅))𝐽) ⊆ 𝐽) → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ ((RSpan‘𝑅)‘𝐽)) |
22 | 11, 14, 18, 21 | syl3anc 1368 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ ((RSpan‘𝑅)‘𝐽)) |
23 | eqid 2758 | . . . . 5 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
24 | 23, 2 | rspidlid 31103 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝐵) → ((RSpan‘𝑅)‘𝐽) = 𝐽) |
25 | 6, 8, 24 | syl2anc 587 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘𝐽) = 𝐽) |
26 | 22, 25 | sseqtrd 3934 | . 2 ⊢ (𝜑 → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ 𝐽) |
27 | 9, 26 | eqsstrd 3932 | 1 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 .rcmulr 16637 LSSumclsm 18839 mulGrpcmgp 19320 Ringcrg 19378 LModclmod 19715 ringLModcrglmod 20022 LIdealclidl 20023 RSpancrsp 20024 IDLsrgcidlsrg 31178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-sca 16652 df-vsca 16653 df-ip 16654 df-tset 16655 df-ple 16656 df-0g 16786 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-grp 18185 df-minusg 18186 df-sbg 18187 df-subg 18356 df-lsm 18841 df-mgp 19321 df-ur 19333 df-ring 19380 df-subrg 19614 df-lmod 19717 df-lss 19785 df-lsp 19825 df-sra 20025 df-rgmod 20026 df-lidl 20027 df-rsp 20028 df-idlsrg 31179 |
This theorem is referenced by: idlsrgmulrssin 31191 zarclsun 31353 |
Copyright terms: Public domain | W3C validator |