![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrgmulrss2 | Structured version Visualization version GIF version |
Description: The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
Ref | Expression |
---|---|
idlsrgmulrss2.1 | β’ π = (IDLsrgβπ ) |
idlsrgmulrss2.2 | β’ π΅ = (LIdealβπ ) |
idlsrgmulrss2.3 | β’ β = (.rβπ) |
idlsrgmulrss2.5 | β’ Β· = (.rβπ ) |
idlsrgmulrss2.6 | β’ (π β π β Ring) |
idlsrgmulrss2.7 | β’ (π β πΌ β π΅) |
idlsrgmulrss2.8 | β’ (π β π½ β π΅) |
Ref | Expression |
---|---|
idlsrgmulrss2 | β’ (π β (πΌ β π½) β π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgmulrss2.1 | . . 3 β’ π = (IDLsrgβπ ) | |
2 | idlsrgmulrss2.2 | . . 3 β’ π΅ = (LIdealβπ ) | |
3 | idlsrgmulrss2.3 | . . 3 β’ β = (.rβπ) | |
4 | eqid 2726 | . . 3 β’ (mulGrpβπ ) = (mulGrpβπ ) | |
5 | eqid 2726 | . . 3 β’ (LSSumβ(mulGrpβπ )) = (LSSumβ(mulGrpβπ )) | |
6 | idlsrgmulrss2.6 | . . 3 β’ (π β π β Ring) | |
7 | idlsrgmulrss2.7 | . . 3 β’ (π β πΌ β π΅) | |
8 | idlsrgmulrss2.8 | . . 3 β’ (π β π½ β π΅) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | idlsrgmulrval 33129 | . 2 β’ (π β (πΌ β π½) = ((RSpanβπ )β(πΌ(LSSumβ(mulGrpβπ ))π½))) |
10 | rlmlmod 21059 | . . . . 5 β’ (π β Ring β (ringLModβπ ) β LMod) | |
11 | 6, 10 | syl 17 | . . . 4 β’ (π β (ringLModβπ ) β LMod) |
12 | eqid 2726 | . . . . . 6 β’ (Baseβπ ) = (Baseβπ ) | |
13 | 12, 2 | lidlss 21071 | . . . . 5 β’ (π½ β π΅ β π½ β (Baseβπ )) |
14 | 8, 13 | syl 17 | . . . 4 β’ (π β π½ β (Baseβπ )) |
15 | 12, 2 | lidlss 21071 | . . . . . 6 β’ (πΌ β π΅ β πΌ β (Baseβπ )) |
16 | 7, 15 | syl 17 | . . . . 5 β’ (π β πΌ β (Baseβπ )) |
17 | 8, 2 | eleqtrdi 2837 | . . . . 5 β’ (π β π½ β (LIdealβπ )) |
18 | 12, 4, 5, 6, 16, 17 | ringlsmss2 33013 | . . . 4 β’ (π β (πΌ(LSSumβ(mulGrpβπ ))π½) β π½) |
19 | rlmbas 21049 | . . . . 5 β’ (Baseβπ ) = (Baseβ(ringLModβπ )) | |
20 | rspval 21070 | . . . . 5 β’ (RSpanβπ ) = (LSpanβ(ringLModβπ )) | |
21 | 19, 20 | lspss 20831 | . . . 4 β’ (((ringLModβπ ) β LMod β§ π½ β (Baseβπ ) β§ (πΌ(LSSumβ(mulGrpβπ ))π½) β π½) β ((RSpanβπ )β(πΌ(LSSumβ(mulGrpβπ ))π½)) β ((RSpanβπ )βπ½)) |
22 | 11, 14, 18, 21 | syl3anc 1368 | . . 3 β’ (π β ((RSpanβπ )β(πΌ(LSSumβ(mulGrpβπ ))π½)) β ((RSpanβπ )βπ½)) |
23 | eqid 2726 | . . . . 5 β’ (RSpanβπ ) = (RSpanβπ ) | |
24 | 23, 2 | rspidlid 32993 | . . . 4 β’ ((π β Ring β§ π½ β π΅) β ((RSpanβπ )βπ½) = π½) |
25 | 6, 8, 24 | syl2anc 583 | . . 3 β’ (π β ((RSpanβπ )βπ½) = π½) |
26 | 22, 25 | sseqtrd 4017 | . 2 β’ (π β ((RSpanβπ )β(πΌ(LSSumβ(mulGrpβπ ))π½)) β π½) |
27 | 9, 26 | eqsstrd 4015 | 1 β’ (π β (πΌ β π½) β π½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wss 3943 βcfv 6537 (class class class)co 7405 Basecbs 17153 .rcmulr 17207 LSSumclsm 19554 mulGrpcmgp 20039 Ringcrg 20138 LModclmod 20706 ringLModcrglmod 21020 LIdealclidl 21065 RSpancrsp 21066 IDLsrgcidlsrg 33120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-subrg 20471 df-lmod 20708 df-lss 20779 df-lsp 20819 df-sra 21021 df-rgmod 21022 df-lidl 21067 df-rsp 21068 df-idlsrg 33121 |
This theorem is referenced by: idlsrgmulrssin 33133 zarclsun 33380 |
Copyright terms: Public domain | W3C validator |