| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrgmulrss2 | Structured version Visualization version GIF version | ||
| Description: The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
| Ref | Expression |
|---|---|
| idlsrgmulrss2.1 | ⊢ 𝑆 = (IDLsrg‘𝑅) |
| idlsrgmulrss2.2 | ⊢ 𝐵 = (LIdeal‘𝑅) |
| idlsrgmulrss2.3 | ⊢ ⊗ = (.r‘𝑆) |
| idlsrgmulrss2.5 | ⊢ · = (.r‘𝑅) |
| idlsrgmulrss2.6 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| idlsrgmulrss2.7 | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| idlsrgmulrss2.8 | ⊢ (𝜑 → 𝐽 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| idlsrgmulrss2 | ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlsrgmulrss2.1 | . . 3 ⊢ 𝑆 = (IDLsrg‘𝑅) | |
| 2 | idlsrgmulrss2.2 | . . 3 ⊢ 𝐵 = (LIdeal‘𝑅) | |
| 3 | idlsrgmulrss2.3 | . . 3 ⊢ ⊗ = (.r‘𝑆) | |
| 4 | eqid 2730 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | eqid 2730 | . . 3 ⊢ (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) | |
| 6 | idlsrgmulrss2.6 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 7 | idlsrgmulrss2.7 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 8 | idlsrgmulrss2.8 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | idlsrgmulrval 33487 | . 2 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) = ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽))) |
| 10 | rlmlmod 21117 | . . . . 5 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) |
| 12 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 13 | 12, 2 | lidlss 21129 | . . . . 5 ⊢ (𝐽 ∈ 𝐵 → 𝐽 ⊆ (Base‘𝑅)) |
| 14 | 8, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ⊆ (Base‘𝑅)) |
| 15 | 12, 2 | lidlss 21129 | . . . . . 6 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ⊆ (Base‘𝑅)) |
| 16 | 7, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) |
| 17 | 8, 2 | eleqtrdi 2839 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) |
| 18 | 12, 4, 5, 6, 16, 17 | ringlsmss2 33375 | . . . 4 ⊢ (𝜑 → (𝐼(LSSum‘(mulGrp‘𝑅))𝐽) ⊆ 𝐽) |
| 19 | rlmbas 21107 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
| 20 | rspval 21128 | . . . . 5 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
| 21 | 19, 20 | lspss 20897 | . . . 4 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐽 ⊆ (Base‘𝑅) ∧ (𝐼(LSSum‘(mulGrp‘𝑅))𝐽) ⊆ 𝐽) → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ ((RSpan‘𝑅)‘𝐽)) |
| 22 | 11, 14, 18, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ ((RSpan‘𝑅)‘𝐽)) |
| 23 | eqid 2730 | . . . . 5 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 24 | 23, 2 | rspidlid 33353 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝐵) → ((RSpan‘𝑅)‘𝐽) = 𝐽) |
| 25 | 6, 8, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘𝐽) = 𝐽) |
| 26 | 22, 25 | sseqtrd 3986 | . 2 ⊢ (𝜑 → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ 𝐽) |
| 27 | 9, 26 | eqsstrd 3984 | 1 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 LSSumclsm 19571 mulGrpcmgp 20056 Ringcrg 20149 LModclmod 20773 ringLModcrglmod 21086 LIdealclidl 21123 RSpancrsp 21124 IDLsrgcidlsrg 33478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-idlsrg 33479 |
| This theorem is referenced by: idlsrgmulrssin 33491 zarclsun 33867 |
| Copyright terms: Public domain | W3C validator |