| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrgmulrss2 | Structured version Visualization version GIF version | ||
| Description: The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
| Ref | Expression |
|---|---|
| idlsrgmulrss2.1 | ⊢ 𝑆 = (IDLsrg‘𝑅) |
| idlsrgmulrss2.2 | ⊢ 𝐵 = (LIdeal‘𝑅) |
| idlsrgmulrss2.3 | ⊢ ⊗ = (.r‘𝑆) |
| idlsrgmulrss2.5 | ⊢ · = (.r‘𝑅) |
| idlsrgmulrss2.6 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| idlsrgmulrss2.7 | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| idlsrgmulrss2.8 | ⊢ (𝜑 → 𝐽 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| idlsrgmulrss2 | ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlsrgmulrss2.1 | . . 3 ⊢ 𝑆 = (IDLsrg‘𝑅) | |
| 2 | idlsrgmulrss2.2 | . . 3 ⊢ 𝐵 = (LIdeal‘𝑅) | |
| 3 | idlsrgmulrss2.3 | . . 3 ⊢ ⊗ = (.r‘𝑆) | |
| 4 | eqid 2729 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | eqid 2729 | . . 3 ⊢ (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) | |
| 6 | idlsrgmulrss2.6 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 7 | idlsrgmulrss2.7 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 8 | idlsrgmulrss2.8 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | idlsrgmulrval 33456 | . 2 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) = ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽))) |
| 10 | rlmlmod 21125 | . . . . 5 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) |
| 12 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 13 | 12, 2 | lidlss 21137 | . . . . 5 ⊢ (𝐽 ∈ 𝐵 → 𝐽 ⊆ (Base‘𝑅)) |
| 14 | 8, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ⊆ (Base‘𝑅)) |
| 15 | 12, 2 | lidlss 21137 | . . . . . 6 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ⊆ (Base‘𝑅)) |
| 16 | 7, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) |
| 17 | 8, 2 | eleqtrdi 2838 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) |
| 18 | 12, 4, 5, 6, 16, 17 | ringlsmss2 33344 | . . . 4 ⊢ (𝜑 → (𝐼(LSSum‘(mulGrp‘𝑅))𝐽) ⊆ 𝐽) |
| 19 | rlmbas 21115 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
| 20 | rspval 21136 | . . . . 5 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
| 21 | 19, 20 | lspss 20905 | . . . 4 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐽 ⊆ (Base‘𝑅) ∧ (𝐼(LSSum‘(mulGrp‘𝑅))𝐽) ⊆ 𝐽) → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ ((RSpan‘𝑅)‘𝐽)) |
| 22 | 11, 14, 18, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ ((RSpan‘𝑅)‘𝐽)) |
| 23 | eqid 2729 | . . . . 5 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 24 | 23, 2 | rspidlid 33322 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝐵) → ((RSpan‘𝑅)‘𝐽) = 𝐽) |
| 25 | 6, 8, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘𝐽) = 𝐽) |
| 26 | 22, 25 | sseqtrd 3974 | . 2 ⊢ (𝜑 → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ 𝐽) |
| 27 | 9, 26 | eqsstrd 3972 | 1 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 .rcmulr 17180 LSSumclsm 19531 mulGrpcmgp 20043 Ringcrg 20136 LModclmod 20781 ringLModcrglmod 21094 LIdealclidl 21131 RSpancrsp 21132 IDLsrgcidlsrg 33447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-rsp 21134 df-idlsrg 33448 |
| This theorem is referenced by: idlsrgmulrssin 33460 zarclsun 33836 |
| Copyright terms: Public domain | W3C validator |