MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rereccld Structured version   Visualization version   GIF version

Theorem rereccld 12121
Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
redivcld.1 (𝜑𝐴 ∈ ℝ)
rereccld.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
rereccld (𝜑 → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rereccld
StepHypRef Expression
1 redivcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 rereccld.2 . 2 (𝜑𝐴 ≠ 0)
3 rereccl 12012 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
41, 2, 3syl2anc 583 1 (𝜑 → (1 / 𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2946  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   / cdiv 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948
This theorem is referenced by:  recgt0  12140  prodgt0  12141  ltdiv1  12159  ltrec  12177  lerec  12178  lediv12a  12188  nnrecl  12551  rpnnen1lem5  13046  expnlbnd  14282  cnsubrg  21468  evth  25010  ncvs1  25210  reeff1o  26509  rtprmirr  26821  isosctrlem2  26880  chordthmlem2  26894  cxplim  27033  nv1  30707  nmblolbii  30831  norm1  31281  norm1exi  31282  nmbdoplbi  32056  nmcoplbi  32060  nmbdfnlbi  32081  nmcfnlbi  32084  branmfn  32137  strlem1  32282  dya2icoseg  34242  logdivsqrle  34627  irrapxlem2  42779  irrapxlem5  42782  pell1234qrreccl  42810  pell14qrdich  42825  radcnvrat  44283  hashnzfzclim  44291  reclt0  45306  ltdiv23neg  45309  sumnnodd  45551  ioodvbdlimc1lem2  45853  ioodvbdlimc2lem  45855  stoweidlem7  45928  stoweidlem11  45932  stoweidlem14  45935  stoweidlem25  45946  stoweidlem36  45957  stoweidlem42  45963  stirlinglem10  46004  stirlinglem11  46005  stirlinglem12  46006  fourierdlem40  46068  fourierdlem78  46105  pimrecltpos  46629  pimrecltneg  46645  eenglngeehlnmlem1  48471
  Copyright terms: Public domain W3C validator