Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rereccld | Structured version Visualization version GIF version |
Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
redivcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rereccld.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
Ref | Expression |
---|---|
rereccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redivcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rereccld.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | rereccl 11396 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2951 (class class class)co 7150 ℝcr 10574 0cc0 10575 1c1 10576 / cdiv 11335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 |
This theorem is referenced by: recgt0 11524 prodgt0 11525 ltdiv1 11542 ltrec 11560 lerec 11561 lediv12a 11571 nnrecl 11932 rpnnen1lem5 12421 expnlbnd 13644 cnsubrg 20226 evth 23660 ncvs1 23858 reeff1o 25141 isosctrlem2 25504 chordthmlem2 25518 cxplim 25656 nv1 28557 nmblolbii 28681 norm1 29131 norm1exi 29132 nmbdoplbi 29906 nmcoplbi 29910 nmbdfnlbi 29931 nmcfnlbi 29934 branmfn 29987 strlem1 30132 dya2icoseg 31763 logdivsqrle 32149 rtprmirr 39844 irrapxlem2 40137 irrapxlem5 40140 pell1234qrreccl 40168 pell14qrdich 40183 radcnvrat 41391 hashnzfzclim 41399 reclt0 42394 ltdiv23neg 42397 sumnnodd 42638 ioodvbdlimc1lem2 42940 ioodvbdlimc2lem 42942 stoweidlem7 43015 stoweidlem11 43019 stoweidlem14 43022 stoweidlem25 43033 stoweidlem36 43044 stoweidlem42 43050 stirlinglem10 43091 stirlinglem11 43092 stirlinglem12 43093 fourierdlem40 43155 fourierdlem78 43192 pimrecltpos 43710 pimrecltneg 43724 eenglngeehlnmlem1 45516 |
Copyright terms: Public domain | W3C validator |