MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rereccld Structured version   Visualization version   GIF version

Theorem rereccld 11178
Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
redivcld.1 (𝜑𝐴 ∈ ℝ)
rereccld.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
rereccld (𝜑 → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rereccld
StepHypRef Expression
1 redivcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 rereccld.2 . 2 (𝜑𝐴 ≠ 0)
3 rereccl 11069 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
41, 2, 3syl2anc 579 1 (𝜑 → (1 / 𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2164  wne 2999  (class class class)co 6905  cr 10251  0cc0 10252  1c1 10253   / cdiv 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010
This theorem is referenced by:  recgt0  11197  prodgt0  11198  ltdiv1  11217  ltrec  11235  lerec  11236  lediv12a  11246  nnrecl  11616  rpnnen1lem5  12103  expnlbnd  13288  cnsubrg  20166  evth  23128  ncvs1  23326  reeff1o  24600  isosctrlem2  24959  chordthmlem2  24973  cxplim  25111  nv1  28074  nmblolbii  28198  norm1  28650  norm1exi  28651  nmbdoplbi  29427  nmcoplbi  29431  nmbdfnlbi  29452  nmcfnlbi  29455  branmfn  29508  strlem1  29653  dya2icoseg  30873  logdivsqrle  31266  irrapxlem2  38224  irrapxlem5  38227  pell1234qrreccl  38255  pell14qrdich  38270  radcnvrat  39346  hashnzfzclim  39354  reclt0  40402  ltdiv23neg  40405  sumnnodd  40650  ioodvbdlimc1lem2  40935  ioodvbdlimc2lem  40937  stoweidlem7  41011  stoweidlem11  41015  stoweidlem14  41018  stoweidlem25  41029  stoweidlem36  41040  stoweidlem42  41046  stirlinglem10  41087  stirlinglem11  41088  stirlinglem12  41089  fourierdlem40  41151  fourierdlem78  41188  pimrecltpos  41706  pimrecltneg  41720  eenglngeehlnmlem1  43281
  Copyright terms: Public domain W3C validator