MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rereccld Structured version   Visualization version   GIF version

Theorem rereccld 11811
Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
redivcld.1 (𝜑𝐴 ∈ ℝ)
rereccld.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
rereccld (𝜑 → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rereccld
StepHypRef Expression
1 redivcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 rereccld.2 . 2 (𝜑𝐴 ≠ 0)
3 rereccl 11702 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
41, 2, 3syl2anc 584 1 (𝜑 → (1 / 𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wne 2944  (class class class)co 7284  cr 10879  0cc0 10880  1c1 10881   / cdiv 11641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642
This theorem is referenced by:  recgt0  11830  prodgt0  11831  ltdiv1  11848  ltrec  11866  lerec  11867  lediv12a  11877  nnrecl  12240  rpnnen1lem5  12730  expnlbnd  13957  cnsubrg  20667  evth  24131  ncvs1  24330  reeff1o  25615  isosctrlem2  25978  chordthmlem2  25992  cxplim  26130  nv1  29046  nmblolbii  29170  norm1  29620  norm1exi  29621  nmbdoplbi  30395  nmcoplbi  30399  nmbdfnlbi  30420  nmcfnlbi  30423  branmfn  30476  strlem1  30621  dya2icoseg  32253  logdivsqrle  32639  rtprmirr  40354  irrapxlem2  40652  irrapxlem5  40655  pell1234qrreccl  40683  pell14qrdich  40698  radcnvrat  41939  hashnzfzclim  41947  reclt0  42938  ltdiv23neg  42941  sumnnodd  43178  ioodvbdlimc1lem2  43480  ioodvbdlimc2lem  43482  stoweidlem7  43555  stoweidlem11  43559  stoweidlem14  43562  stoweidlem25  43573  stoweidlem36  43584  stoweidlem42  43590  stirlinglem10  43631  stirlinglem11  43632  stirlinglem12  43633  fourierdlem40  43695  fourierdlem78  43732  pimrecltpos  44253  pimrecltneg  44269  eenglngeehlnmlem1  46094
  Copyright terms: Public domain W3C validator