Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rereccld | Structured version Visualization version GIF version |
Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
redivcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rereccld.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
Ref | Expression |
---|---|
rereccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redivcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rereccld.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | rereccl 11702 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2944 (class class class)co 7284 ℝcr 10879 0cc0 10880 1c1 10881 / cdiv 11641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 |
This theorem is referenced by: recgt0 11830 prodgt0 11831 ltdiv1 11848 ltrec 11866 lerec 11867 lediv12a 11877 nnrecl 12240 rpnnen1lem5 12730 expnlbnd 13957 cnsubrg 20667 evth 24131 ncvs1 24330 reeff1o 25615 isosctrlem2 25978 chordthmlem2 25992 cxplim 26130 nv1 29046 nmblolbii 29170 norm1 29620 norm1exi 29621 nmbdoplbi 30395 nmcoplbi 30399 nmbdfnlbi 30420 nmcfnlbi 30423 branmfn 30476 strlem1 30621 dya2icoseg 32253 logdivsqrle 32639 rtprmirr 40354 irrapxlem2 40652 irrapxlem5 40655 pell1234qrreccl 40683 pell14qrdich 40698 radcnvrat 41939 hashnzfzclim 41947 reclt0 42938 ltdiv23neg 42941 sumnnodd 43178 ioodvbdlimc1lem2 43480 ioodvbdlimc2lem 43482 stoweidlem7 43555 stoweidlem11 43559 stoweidlem14 43562 stoweidlem25 43573 stoweidlem36 43584 stoweidlem42 43590 stirlinglem10 43631 stirlinglem11 43632 stirlinglem12 43633 fourierdlem40 43695 fourierdlem78 43732 pimrecltpos 44253 pimrecltneg 44269 eenglngeehlnmlem1 46094 |
Copyright terms: Public domain | W3C validator |