MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rereccld Structured version   Visualization version   GIF version

Theorem rereccld 11990
Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
redivcld.1 (𝜑𝐴 ∈ ℝ)
rereccld.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
rereccld (𝜑 → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rereccld
StepHypRef Expression
1 redivcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 rereccld.2 . 2 (𝜑𝐴 ≠ 0)
3 rereccl 11881 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
41, 2, 3syl2anc 585 1 (𝜑 → (1 / 𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wne 2940  (class class class)co 7361  cr 11058  0cc0 11059  1c1 11060   / cdiv 11820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821
This theorem is referenced by:  recgt0  12009  prodgt0  12010  ltdiv1  12027  ltrec  12045  lerec  12046  lediv12a  12056  nnrecl  12419  rpnnen1lem5  12914  expnlbnd  14145  cnsubrg  20880  evth  24345  ncvs1  24544  reeff1o  25829  isosctrlem2  26192  chordthmlem2  26206  cxplim  26344  nv1  29666  nmblolbii  29790  norm1  30240  norm1exi  30241  nmbdoplbi  31015  nmcoplbi  31019  nmbdfnlbi  31040  nmcfnlbi  31043  branmfn  31096  strlem1  31241  dya2icoseg  32941  logdivsqrle  33327  rtprmirr  40880  irrapxlem2  41193  irrapxlem5  41196  pell1234qrreccl  41224  pell14qrdich  41239  radcnvrat  42686  hashnzfzclim  42694  reclt0  43716  ltdiv23neg  43719  sumnnodd  43961  ioodvbdlimc1lem2  44263  ioodvbdlimc2lem  44265  stoweidlem7  44338  stoweidlem11  44342  stoweidlem14  44345  stoweidlem25  44356  stoweidlem36  44367  stoweidlem42  44373  stirlinglem10  44414  stirlinglem11  44415  stirlinglem12  44416  fourierdlem40  44478  fourierdlem78  44515  pimrecltpos  45039  pimrecltneg  45055  eenglngeehlnmlem1  46913
  Copyright terms: Public domain W3C validator