| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rereccld | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| redivcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rereccld.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Ref | Expression |
|---|---|
| rereccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redivcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rereccld.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | rereccl 11876 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 / cdiv 11811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 |
| This theorem is referenced by: recgt0 12004 prodgt0 12005 ltdiv1 12023 ltrec 12041 lerec 12042 lediv12a 12052 nnrecl 12416 rpnnen1lem5 12916 expnlbnd 14174 cnsubrg 21369 evth 24891 ncvs1 25090 reeff1o 26390 rtprmirr 26703 isosctrlem2 26762 chordthmlem2 26776 cxplim 26915 nv1 30654 nmblolbii 30778 norm1 31228 norm1exi 31229 nmbdoplbi 32003 nmcoplbi 32007 nmbdfnlbi 32028 nmcfnlbi 32031 branmfn 32084 strlem1 32229 constrdircl 33748 constrreinvcl 33755 dya2icoseg 34261 logdivsqrle 34634 readvrec2 42342 readvrec 42343 irrapxlem2 42804 irrapxlem5 42807 pell1234qrreccl 42835 pell14qrdich 42850 radcnvrat 44296 hashnzfzclim 44304 reclt0 45380 ltdiv23neg 45383 sumnnodd 45621 ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 stoweidlem7 45998 stoweidlem11 46002 stoweidlem14 46005 stoweidlem25 46016 stoweidlem36 46027 stoweidlem42 46033 stirlinglem10 46074 stirlinglem11 46075 stirlinglem12 46076 fourierdlem40 46138 fourierdlem78 46175 pimrecltpos 46699 pimrecltneg 46715 eenglngeehlnmlem1 48719 |
| Copyright terms: Public domain | W3C validator |