| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rereccld | Structured version Visualization version GIF version | ||
| Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| redivcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rereccld.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Ref | Expression |
|---|---|
| rereccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redivcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rereccld.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | rereccl 11907 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 / cdiv 11842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 |
| This theorem is referenced by: recgt0 12035 prodgt0 12036 ltdiv1 12054 ltrec 12072 lerec 12073 lediv12a 12083 nnrecl 12447 rpnnen1lem5 12947 expnlbnd 14205 cnsubrg 21351 evth 24865 ncvs1 25064 reeff1o 26364 rtprmirr 26677 isosctrlem2 26736 chordthmlem2 26750 cxplim 26889 nv1 30611 nmblolbii 30735 norm1 31185 norm1exi 31186 nmbdoplbi 31960 nmcoplbi 31964 nmbdfnlbi 31985 nmcfnlbi 31988 branmfn 32041 strlem1 32186 constrdircl 33762 constrreinvcl 33769 dya2icoseg 34275 logdivsqrle 34648 readvrec2 42356 readvrec 42357 irrapxlem2 42818 irrapxlem5 42821 pell1234qrreccl 42849 pell14qrdich 42864 radcnvrat 44310 hashnzfzclim 44318 reclt0 45394 ltdiv23neg 45397 sumnnodd 45635 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 stoweidlem7 46012 stoweidlem11 46016 stoweidlem14 46019 stoweidlem25 46030 stoweidlem36 46041 stoweidlem42 46047 stirlinglem10 46088 stirlinglem11 46089 stirlinglem12 46090 fourierdlem40 46152 fourierdlem78 46189 pimrecltpos 46713 pimrecltneg 46729 eenglngeehlnmlem1 48730 |
| Copyright terms: Public domain | W3C validator |