Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divcan3 | Structured version Visualization version GIF version |
Description: A cancellation law for division. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
divcan3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ (𝐵 · 𝐴) = (𝐵 · 𝐴) | |
2 | simp2 1135 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ) | |
3 | simp1 1134 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ) | |
4 | 2, 3 | mulcld 10979 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · 𝐴) ∈ ℂ) |
5 | 3simpc 1148 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
6 | divmul 11619 | . . 3 ⊢ (((𝐵 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵 · 𝐴) / 𝐵) = 𝐴 ↔ (𝐵 · 𝐴) = (𝐵 · 𝐴))) | |
7 | 4, 3, 5, 6 | syl3anc 1369 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (((𝐵 · 𝐴) / 𝐵) = 𝐴 ↔ (𝐵 · 𝐴) = (𝐵 · 𝐴))) |
8 | 1, 7 | mpbiri 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 (class class class)co 7268 ℂcc 10853 0cc0 10855 · cmul 10860 / cdiv 11615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 |
This theorem is referenced by: divcan4 11643 muldivdir 11651 subdivcomb1 11653 divmuldiv 11658 divcan3zi 11697 divcan3d 11739 ltdiv23 11849 lediv23 11850 2halves 12184 halfaddsub 12189 zdiv 12373 sqdivid 13823 reim 14801 crim 14807 cnpart 14932 absmax 15022 efival 15842 cosadd 15855 cosmul 15863 pythagtriplem12 16508 pythagtriplem14 16510 pythagtriplem15 16511 pythagtriplem16 16512 pythagtriplem17 16513 ovolunlem1a 24641 ovolunlem1 24642 efif1olem2 25680 cxpsqrtlem 25838 leibpilem2 26072 bcmax 26407 logdivsum 26662 ipidsq 29051 dpfrac1 31145 cos2h 35747 isbnd2 35920 lhe4.4ex1a 41900 ltdiv23neg 42888 2zrngnmrid 45460 |
Copyright terms: Public domain | W3C validator |