MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfaddcl Structured version   Visualization version   GIF version

Theorem mpfaddcl 21421
Description: The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
mpfsubrg.q 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
mpfaddcl.p + = (+g𝑆)
Assertion
Ref Expression
mpfaddcl ((𝐹𝑄𝐺𝑄) → (𝐹f + 𝐺) ∈ 𝑄)

Proof of Theorem mpfaddcl
StepHypRef Expression
1 eqid 2737 . . 3 (𝑆s ((Base‘𝑆) ↑m 𝐼)) = (𝑆s ((Base‘𝑆) ↑m 𝐼))
2 eqid 2737 . . 3 (Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
3 mpfsubrg.q . . . . . 6 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
43mpfrcl 21401 . . . . 5 (𝐹𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
54adantr 482 . . . 4 ((𝐹𝑄𝐺𝑄) → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
65simp2d 1143 . . 3 ((𝐹𝑄𝐺𝑄) → 𝑆 ∈ CRing)
7 ovexd 7377 . . 3 ((𝐹𝑄𝐺𝑄) → ((Base‘𝑆) ↑m 𝐼) ∈ V)
83mpfsubrg 21419 . . . . . 6 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
95, 8syl 17 . . . . 5 ((𝐹𝑄𝐺𝑄) → 𝑄 ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
102subrgss 20130 . . . . 5 (𝑄 ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) → 𝑄 ⊆ (Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
119, 10syl 17 . . . 4 ((𝐹𝑄𝐺𝑄) → 𝑄 ⊆ (Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
12 simpl 484 . . . 4 ((𝐹𝑄𝐺𝑄) → 𝐹𝑄)
1311, 12sseldd 3937 . . 3 ((𝐹𝑄𝐺𝑄) → 𝐹 ∈ (Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
14 simpr 486 . . . 4 ((𝐹𝑄𝐺𝑄) → 𝐺𝑄)
1511, 14sseldd 3937 . . 3 ((𝐹𝑄𝐺𝑄) → 𝐺 ∈ (Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
16 mpfaddcl.p . . 3 + = (+g𝑆)
17 eqid 2737 . . 3 (+g‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (+g‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
181, 2, 6, 7, 13, 15, 16, 17pwsplusgval 17299 . 2 ((𝐹𝑄𝐺𝑄) → (𝐹(+g‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))𝐺) = (𝐹f + 𝐺))
1917subrgacl 20140 . . . 4 ((𝑄 ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) ∧ 𝐹𝑄𝐺𝑄) → (𝐹(+g‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))𝐺) ∈ 𝑄)
20193expib 1122 . . 3 (𝑄 ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) → ((𝐹𝑄𝐺𝑄) → (𝐹(+g‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))𝐺) ∈ 𝑄))
219, 20mpcom 38 . 2 ((𝐹𝑄𝐺𝑄) → (𝐹(+g‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))𝐺) ∈ 𝑄)
2218, 21eqeltrrd 2839 1 ((𝐹𝑄𝐺𝑄) → (𝐹f + 𝐺) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3442  wss 3902  ran crn 5626  cfv 6484  (class class class)co 7342  f cof 7598  m cmap 8691  Basecbs 17010  +gcplusg 17060  s cpws 17255  CRingccrg 19879  SubRingcsubrg 20125   evalSub ces 21386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-ofr 7601  df-om 7786  df-1st 7904  df-2nd 7905  df-supp 8053  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-pm 8694  df-ixp 8762  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fsupp 9232  df-sup 9304  df-oi 9372  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-9 12149  df-n0 12340  df-z 12426  df-dec 12544  df-uz 12689  df-fz 13346  df-fzo 13489  df-seq 13828  df-hash 14151  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-ip 17078  df-tset 17079  df-ple 17080  df-ds 17082  df-hom 17084  df-cco 17085  df-0g 17250  df-gsum 17251  df-prds 17256  df-pws 17258  df-mre 17393  df-mrc 17394  df-acs 17396  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-mhm 18528  df-submnd 18529  df-grp 18677  df-minusg 18678  df-sbg 18679  df-mulg 18798  df-subg 18849  df-ghm 18929  df-cntz 19020  df-cmn 19484  df-abl 19485  df-mgp 19816  df-ur 19833  df-srg 19837  df-ring 19880  df-cring 19881  df-rnghom 20054  df-subrg 20127  df-lmod 20231  df-lss 20300  df-lsp 20340  df-assa 21166  df-asp 21167  df-ascl 21168  df-psr 21218  df-mvr 21219  df-mpl 21220  df-evls 21388
This theorem is referenced by:  mzpmfp  40880
  Copyright terms: Public domain W3C validator