![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpfaddcl | Structured version Visualization version GIF version |
Description: The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
mpfsubrg.q | ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
mpfaddcl.p | ⊢ + = (+g‘𝑆) |
Ref | Expression |
---|---|
mpfaddcl | ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f + 𝐺) ∈ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)) = (𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)) | |
2 | eqid 2737 | . . 3 ⊢ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) = (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) | |
3 | mpfsubrg.q | . . . . . 6 ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) | |
4 | 3 | mpfrcl 21401 | . . . . 5 ⊢ (𝐹 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
5 | 4 | adantr 482 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
6 | 5 | simp2d 1143 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑆 ∈ CRing) |
7 | ovexd 7377 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → ((Base‘𝑆) ↑m 𝐼) ∈ V) | |
8 | 3 | mpfsubrg 21419 | . . . . . 6 ⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
10 | 2 | subrgss 20130 | . . . . 5 ⊢ (𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) → 𝑄 ⊆ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑄 ⊆ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
12 | simpl 484 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐹 ∈ 𝑄) | |
13 | 11, 12 | sseldd 3937 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐹 ∈ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
14 | simpr 486 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐺 ∈ 𝑄) | |
15 | 11, 14 | sseldd 3937 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐺 ∈ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
16 | mpfaddcl.p | . . 3 ⊢ + = (+g‘𝑆) | |
17 | eqid 2737 | . . 3 ⊢ (+g‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) = (+g‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) | |
18 | 1, 2, 6, 7, 13, 15, 16, 17 | pwsplusgval 17299 | . 2 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(+g‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))𝐺) = (𝐹 ∘f + 𝐺)) |
19 | 17 | subrgacl 20140 | . . . 4 ⊢ ((𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) ∧ 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(+g‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))𝐺) ∈ 𝑄) |
20 | 19 | 3expib 1122 | . . 3 ⊢ (𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) → ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(+g‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))𝐺) ∈ 𝑄)) |
21 | 9, 20 | mpcom 38 | . 2 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(+g‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))𝐺) ∈ 𝑄) |
22 | 18, 21 | eqeltrrd 2839 | 1 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f + 𝐺) ∈ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ⊆ wss 3902 ran crn 5626 ‘cfv 6484 (class class class)co 7342 ∘f cof 7598 ↑m cmap 8691 Basecbs 17010 +gcplusg 17060 ↑s cpws 17255 CRingccrg 19879 SubRingcsubrg 20125 evalSub ces 21386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-ofr 7601 df-om 7786 df-1st 7904 df-2nd 7905 df-supp 8053 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-pm 8694 df-ixp 8762 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fsupp 9232 df-sup 9304 df-oi 9372 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-z 12426 df-dec 12544 df-uz 12689 df-fz 13346 df-fzo 13489 df-seq 13828 df-hash 14151 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-hom 17084 df-cco 17085 df-0g 17250 df-gsum 17251 df-prds 17256 df-pws 17258 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-mulg 18798 df-subg 18849 df-ghm 18929 df-cntz 19020 df-cmn 19484 df-abl 19485 df-mgp 19816 df-ur 19833 df-srg 19837 df-ring 19880 df-cring 19881 df-rnghom 20054 df-subrg 20127 df-lmod 20231 df-lss 20300 df-lsp 20340 df-assa 21166 df-asp 21167 df-ascl 21168 df-psr 21218 df-mvr 21219 df-mpl 21220 df-evls 21388 |
This theorem is referenced by: mzpmfp 40880 |
Copyright terms: Public domain | W3C validator |