![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpff | Structured version Visualization version GIF version |
Description: Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
mpfsubrg.q | ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
mpff.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
mpff | ⊢ (𝐹 ∈ 𝑄 → 𝐹:(𝐵 ↑𝑚 𝐼)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpff.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
2 | 1 | eqcomi 2835 | . . . 4 ⊢ (Base‘𝑆) = 𝐵 |
3 | 2 | oveq1i 6916 | . . 3 ⊢ ((Base‘𝑆) ↑𝑚 𝐼) = (𝐵 ↑𝑚 𝐼) |
4 | 3 | oveq2i 6917 | . 2 ⊢ (𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)) = (𝑆 ↑s (𝐵 ↑𝑚 𝐼)) |
5 | eqid 2826 | . 2 ⊢ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼))) = (Base‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼))) | |
6 | mpfsubrg.q | . . . 4 ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) | |
7 | 6 | mpfrcl 19879 | . . 3 ⊢ (𝐹 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
8 | 7 | simp2d 1179 | . 2 ⊢ (𝐹 ∈ 𝑄 → 𝑆 ∈ CRing) |
9 | ovexd 6940 | . 2 ⊢ (𝐹 ∈ 𝑄 → (𝐵 ↑𝑚 𝐼) ∈ V) | |
10 | 6 | mpfsubrg 19893 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) |
11 | 5 | subrgss 19138 | . . . 4 ⊢ (𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼))) → 𝑄 ⊆ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) |
12 | 7, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ 𝑄 → 𝑄 ⊆ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) |
13 | id 22 | . . 3 ⊢ (𝐹 ∈ 𝑄 → 𝐹 ∈ 𝑄) | |
14 | 12, 13 | sseldd 3829 | . 2 ⊢ (𝐹 ∈ 𝑄 → 𝐹 ∈ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) |
15 | 4, 1, 5, 8, 9, 14 | pwselbas 16503 | 1 ⊢ (𝐹 ∈ 𝑄 → 𝐹:(𝐵 ↑𝑚 𝐼)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 Vcvv 3415 ⊆ wss 3799 ran crn 5344 ⟶wf 6120 ‘cfv 6124 (class class class)co 6906 ↑𝑚 cmap 8123 Basecbs 16223 ↑s cpws 16461 CRingccrg 18903 SubRingcsubrg 19133 evalSub ces 19865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-inf2 8816 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-iin 4744 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-se 5303 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-isom 6133 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-of 7158 df-ofr 7159 df-om 7328 df-1st 7429 df-2nd 7430 df-supp 7561 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-2o 7828 df-oadd 7831 df-er 8010 df-map 8125 df-pm 8126 df-ixp 8177 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-fsupp 8546 df-sup 8618 df-oi 8685 df-card 9079 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-7 11420 df-8 11421 df-9 11422 df-n0 11620 df-z 11706 df-dec 11823 df-uz 11970 df-fz 12621 df-fzo 12762 df-seq 13097 df-hash 13412 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-ress 16231 df-plusg 16319 df-mulr 16320 df-sca 16322 df-vsca 16323 df-ip 16324 df-tset 16325 df-ple 16326 df-ds 16328 df-hom 16330 df-cco 16331 df-0g 16456 df-gsum 16457 df-prds 16462 df-pws 16464 df-mre 16600 df-mrc 16601 df-acs 16603 df-mgm 17596 df-sgrp 17638 df-mnd 17649 df-mhm 17689 df-submnd 17690 df-grp 17780 df-minusg 17781 df-sbg 17782 df-mulg 17896 df-subg 17943 df-ghm 18010 df-cntz 18101 df-cmn 18549 df-abl 18550 df-mgp 18845 df-ur 18857 df-srg 18861 df-ring 18904 df-cring 18905 df-rnghom 19072 df-subrg 19135 df-lmod 19222 df-lss 19290 df-lsp 19332 df-assa 19674 df-asp 19675 df-ascl 19676 df-psr 19718 df-mvr 19719 df-mpl 19720 df-evls 19867 |
This theorem is referenced by: pf1ind 20080 |
Copyright terms: Public domain | W3C validator |