Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpfmulcl | Structured version Visualization version GIF version |
Description: The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
mpfsubrg.q | ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
mpfmulcl.t | ⊢ · = (.r‘𝑆) |
Ref | Expression |
---|---|
mpfmulcl | ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f · 𝐺) ∈ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ (𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)) = (𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)) | |
2 | eqid 2758 | . . 3 ⊢ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) = (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) | |
3 | mpfsubrg.q | . . . . . 6 ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) | |
4 | 3 | mpfrcl 20848 | . . . . 5 ⊢ (𝐹 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
5 | 4 | adantr 484 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
6 | 5 | simp2d 1140 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑆 ∈ CRing) |
7 | ovexd 7185 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → ((Base‘𝑆) ↑m 𝐼) ∈ V) | |
8 | 3 | mpfsubrg 20866 | . . . . . 6 ⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
10 | 2 | subrgss 19604 | . . . . 5 ⊢ (𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) → 𝑄 ⊆ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑄 ⊆ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
12 | simpl 486 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐹 ∈ 𝑄) | |
13 | 11, 12 | sseldd 3893 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐹 ∈ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
14 | simpr 488 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐺 ∈ 𝑄) | |
15 | 11, 14 | sseldd 3893 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐺 ∈ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) |
16 | mpfmulcl.t | . . 3 ⊢ · = (.r‘𝑆) | |
17 | eqid 2758 | . . 3 ⊢ (.r‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) = (.r‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) | |
18 | 1, 2, 6, 7, 13, 15, 16, 17 | pwsmulrval 16822 | . 2 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))𝐺) = (𝐹 ∘f · 𝐺)) |
19 | 17 | subrgmcl 19615 | . . . 4 ⊢ ((𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) ∧ 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))𝐺) ∈ 𝑄) |
20 | 19 | 3expib 1119 | . . 3 ⊢ (𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼))) → ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))𝐺) ∈ 𝑄)) |
21 | 9, 20 | mpcom 38 | . 2 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))𝐺) ∈ 𝑄) |
22 | 18, 21 | eqeltrrd 2853 | 1 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f · 𝐺) ∈ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3858 ran crn 5525 ‘cfv 6335 (class class class)co 7150 ∘f cof 7403 ↑m cmap 8416 Basecbs 16541 .rcmulr 16624 ↑s cpws 16778 CRingccrg 19366 SubRingcsubrg 19599 evalSub ces 20833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-ofr 7406 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-pm 8419 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-sup 8939 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-fzo 13083 df-seq 13419 df-hash 13741 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-hom 16647 df-cco 16648 df-0g 16773 df-gsum 16774 df-prds 16779 df-pws 16781 df-mre 16915 df-mrc 16916 df-acs 16918 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-mhm 18022 df-submnd 18023 df-grp 18172 df-minusg 18173 df-sbg 18174 df-mulg 18292 df-subg 18343 df-ghm 18423 df-cntz 18514 df-cmn 18975 df-abl 18976 df-mgp 19308 df-ur 19320 df-srg 19324 df-ring 19367 df-cring 19368 df-rnghom 19538 df-subrg 19601 df-lmod 19704 df-lss 19772 df-lsp 19812 df-assa 20618 df-asp 20619 df-ascl 20620 df-psr 20671 df-mvr 20672 df-mpl 20673 df-evls 20835 |
This theorem is referenced by: mzpmfp 40083 |
Copyright terms: Public domain | W3C validator |