| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnaddscl | Structured version Visualization version GIF version | ||
| Description: The positive surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| nnaddscl | ⊢ ((𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs) → (𝐴 +s 𝐵) ∈ ℕs) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0addscl 28272 | . . . 4 ⊢ ((𝐴 ∈ ℕ0s ∧ 𝐵 ∈ ℕ0s) → (𝐴 +s 𝐵) ∈ ℕ0s) | |
| 2 | 1 | ad2ant2r 747 | . . 3 ⊢ (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → (𝐴 +s 𝐵) ∈ ℕ0s) |
| 3 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐴 ∈ ℕ0s) | |
| 4 | 3 | n0snod 28254 | . . . 4 ⊢ (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐴 ∈ No ) |
| 5 | simprl 770 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐵 ∈ ℕ0s) | |
| 6 | 5 | n0snod 28254 | . . . 4 ⊢ (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐵 ∈ No ) |
| 7 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 0s <s 𝐴) | |
| 8 | simprr 772 | . . . 4 ⊢ (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 0s <s 𝐵) | |
| 9 | 4, 6, 7, 8 | addsgt0d 27957 | . . 3 ⊢ (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 0s <s (𝐴 +s 𝐵)) |
| 10 | 2, 9 | jca 511 | . 2 ⊢ (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → ((𝐴 +s 𝐵) ∈ ℕ0s ∧ 0s <s (𝐴 +s 𝐵))) |
| 11 | elnns2 28269 | . . 3 ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴)) | |
| 12 | elnns2 28269 | . . 3 ⊢ (𝐵 ∈ ℕs ↔ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) | |
| 13 | 11, 12 | anbi12i 628 | . 2 ⊢ ((𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs) ↔ ((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵))) |
| 14 | elnns2 28269 | . 2 ⊢ ((𝐴 +s 𝐵) ∈ ℕs ↔ ((𝐴 +s 𝐵) ∈ ℕ0s ∧ 0s <s (𝐴 +s 𝐵))) | |
| 15 | 10, 13, 14 | 3imtr4i 292 | 1 ⊢ ((𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs) → (𝐴 +s 𝐵) ∈ ℕs) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 <s cslt 27579 0s c0s 27766 +s cadds 27902 ℕ0scnn0s 28242 ℕscnns 28243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 df-0s 27768 df-1s 27769 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec2 27892 df-adds 27903 df-n0s 28244 df-nns 28245 |
| This theorem is referenced by: peano2nns 28278 zaddscl 28318 zmulscld 28321 readdscl 28401 |
| Copyright terms: Public domain | W3C validator |