MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0mulscl Structured version   Visualization version   GIF version

Theorem n0mulscl 28363
Description: The non-negative surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0mulscl ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s)

Proof of Theorem n0mulscl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑛 = 0s → (𝐴 ·s 𝑛) = (𝐴 ·s 0s ))
21eleq1d 2824 . . . 4 (𝑛 = 0s → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s 0s ) ∈ ℕ0s))
32imbi2d 340 . . 3 (𝑛 = 0s → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s 0s ) ∈ ℕ0s)))
4 oveq2 7439 . . . . 5 (𝑛 = 𝑚 → (𝐴 ·s 𝑛) = (𝐴 ·s 𝑚))
54eleq1d 2824 . . . 4 (𝑛 = 𝑚 → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s 𝑚) ∈ ℕ0s))
65imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s 𝑚) ∈ ℕ0s)))
7 oveq2 7439 . . . . 5 (𝑛 = (𝑚 +s 1s ) → (𝐴 ·s 𝑛) = (𝐴 ·s (𝑚 +s 1s )))
87eleq1d 2824 . . . 4 (𝑛 = (𝑚 +s 1s ) → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s))
98imbi2d 340 . . 3 (𝑛 = (𝑚 +s 1s ) → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)))
10 oveq2 7439 . . . . 5 (𝑛 = 𝐵 → (𝐴 ·s 𝑛) = (𝐴 ·s 𝐵))
1110eleq1d 2824 . . . 4 (𝑛 = 𝐵 → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s 𝐵) ∈ ℕ0s))
1211imbi2d 340 . . 3 (𝑛 = 𝐵 → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s 𝐵) ∈ ℕ0s)))
13 n0sno 28343 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
14 muls01 28153 . . . . 5 (𝐴 No → (𝐴 ·s 0s ) = 0s )
1513, 14syl 17 . . . 4 (𝐴 ∈ ℕ0s → (𝐴 ·s 0s ) = 0s )
16 0n0s 28349 . . . 4 0s ∈ ℕ0s
1715, 16eqeltrdi 2847 . . 3 (𝐴 ∈ ℕ0s → (𝐴 ·s 0s ) ∈ ℕ0s)
1813ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → 𝐴 No )
19 n0sno 28343 . . . . . . . . . 10 (𝑚 ∈ ℕ0s𝑚 No )
2019ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → 𝑚 No )
21 1sno 27887 . . . . . . . . . 10 1s No
2221a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → 1s No )
2318, 20, 22addsdid 28197 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ·s (𝑚 +s 1s )) = ((𝐴 ·s 𝑚) +s (𝐴 ·s 1s )))
2413mulsridd 28155 . . . . . . . . . 10 (𝐴 ∈ ℕ0s → (𝐴 ·s 1s ) = 𝐴)
2524oveq2d 7447 . . . . . . . . 9 (𝐴 ∈ ℕ0s → ((𝐴 ·s 𝑚) +s (𝐴 ·s 1s )) = ((𝐴 ·s 𝑚) +s 𝐴))
2625ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s (𝐴 ·s 1s )) = ((𝐴 ·s 𝑚) +s 𝐴))
2723, 26eqtrd 2775 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ·s (𝑚 +s 1s )) = ((𝐴 ·s 𝑚) +s 𝐴))
28 n0addscl 28362 . . . . . . . . 9 (((𝐴 ·s 𝑚) ∈ ℕ0s𝐴 ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s 𝐴) ∈ ℕ0s)
2928ancoms 458 . . . . . . . 8 ((𝐴 ∈ ℕ0s ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s 𝐴) ∈ ℕ0s)
3029adantlr 715 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s 𝐴) ∈ ℕ0s)
3127, 30eqeltrd 2839 . . . . . 6 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)
3231ex 412 . . . . 5 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → ((𝐴 ·s 𝑚) ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s))
3332expcom 413 . . . 4 (𝑚 ∈ ℕ0s → (𝐴 ∈ ℕ0s → ((𝐴 ·s 𝑚) ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)))
3433a2d 29 . . 3 (𝑚 ∈ ℕ0s → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)))
353, 6, 9, 12, 17, 34n0sind 28352 . 2 (𝐵 ∈ ℕ0s → (𝐴 ∈ ℕ0s → (𝐴 ·s 𝐵) ∈ ℕ0s))
3635impcom 407 1 ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  (class class class)co 7431   No csur 27699   0s c0s 27882   1s c1s 27883   +s cadds 28007   ·s cmuls 28147  0scnn0s 28333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148  df-n0s 28335
This theorem is referenced by:  nnmulscl  28365  addhalfcut  28434
  Copyright terms: Public domain W3C validator