MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0mulscl Structured version   Visualization version   GIF version

Theorem n0mulscl 28273
Description: The non-negative surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0mulscl ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s)

Proof of Theorem n0mulscl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . 5 (𝑛 = 0s → (𝐴 ·s 𝑛) = (𝐴 ·s 0s ))
21eleq1d 2816 . . . 4 (𝑛 = 0s → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s 0s ) ∈ ℕ0s))
32imbi2d 340 . . 3 (𝑛 = 0s → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s 0s ) ∈ ℕ0s)))
4 oveq2 7354 . . . . 5 (𝑛 = 𝑚 → (𝐴 ·s 𝑛) = (𝐴 ·s 𝑚))
54eleq1d 2816 . . . 4 (𝑛 = 𝑚 → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s 𝑚) ∈ ℕ0s))
65imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s 𝑚) ∈ ℕ0s)))
7 oveq2 7354 . . . . 5 (𝑛 = (𝑚 +s 1s ) → (𝐴 ·s 𝑛) = (𝐴 ·s (𝑚 +s 1s )))
87eleq1d 2816 . . . 4 (𝑛 = (𝑚 +s 1s ) → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s))
98imbi2d 340 . . 3 (𝑛 = (𝑚 +s 1s ) → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)))
10 oveq2 7354 . . . . 5 (𝑛 = 𝐵 → (𝐴 ·s 𝑛) = (𝐴 ·s 𝐵))
1110eleq1d 2816 . . . 4 (𝑛 = 𝐵 → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s 𝐵) ∈ ℕ0s))
1211imbi2d 340 . . 3 (𝑛 = 𝐵 → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s 𝐵) ∈ ℕ0s)))
13 n0sno 28252 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
14 muls01 28051 . . . . 5 (𝐴 No → (𝐴 ·s 0s ) = 0s )
1513, 14syl 17 . . . 4 (𝐴 ∈ ℕ0s → (𝐴 ·s 0s ) = 0s )
16 0n0s 28258 . . . 4 0s ∈ ℕ0s
1715, 16eqeltrdi 2839 . . 3 (𝐴 ∈ ℕ0s → (𝐴 ·s 0s ) ∈ ℕ0s)
1813ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → 𝐴 No )
19 n0sno 28252 . . . . . . . . . 10 (𝑚 ∈ ℕ0s𝑚 No )
2019ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → 𝑚 No )
21 1sno 27771 . . . . . . . . . 10 1s No
2221a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → 1s No )
2318, 20, 22addsdid 28095 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ·s (𝑚 +s 1s )) = ((𝐴 ·s 𝑚) +s (𝐴 ·s 1s )))
2413mulsridd 28053 . . . . . . . . . 10 (𝐴 ∈ ℕ0s → (𝐴 ·s 1s ) = 𝐴)
2524oveq2d 7362 . . . . . . . . 9 (𝐴 ∈ ℕ0s → ((𝐴 ·s 𝑚) +s (𝐴 ·s 1s )) = ((𝐴 ·s 𝑚) +s 𝐴))
2625ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s (𝐴 ·s 1s )) = ((𝐴 ·s 𝑚) +s 𝐴))
2723, 26eqtrd 2766 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ·s (𝑚 +s 1s )) = ((𝐴 ·s 𝑚) +s 𝐴))
28 n0addscl 28272 . . . . . . . . 9 (((𝐴 ·s 𝑚) ∈ ℕ0s𝐴 ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s 𝐴) ∈ ℕ0s)
2928ancoms 458 . . . . . . . 8 ((𝐴 ∈ ℕ0s ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s 𝐴) ∈ ℕ0s)
3029adantlr 715 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s 𝐴) ∈ ℕ0s)
3127, 30eqeltrd 2831 . . . . . 6 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)
3231ex 412 . . . . 5 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → ((𝐴 ·s 𝑚) ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s))
3332expcom 413 . . . 4 (𝑚 ∈ ℕ0s → (𝐴 ∈ ℕ0s → ((𝐴 ·s 𝑚) ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)))
3433a2d 29 . . 3 (𝑚 ∈ ℕ0s → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)))
353, 6, 9, 12, 17, 34n0sind 28261 . 2 (𝐵 ∈ ℕ0s → (𝐴 ∈ ℕ0s → (𝐴 ·s 𝐵) ∈ ℕ0s))
3635impcom 407 1 ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346   No csur 27578   0s c0s 27766   1s c1s 27767   +s cadds 27902   ·s cmuls 28045  0scnn0s 28242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046  df-n0s 28244
This theorem is referenced by:  nnmulscl  28275  eucliddivs  28301  n0expscl  28355  addhalfcut  28379  zs12ge0  28393
  Copyright terms: Public domain W3C validator