MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0mulscl Structured version   Visualization version   GIF version

Theorem n0mulscl 28294
Description: The non-negative surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0mulscl ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s)

Proof of Theorem n0mulscl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . . . 5 (𝑛 = 0s → (𝐴 ·s 𝑛) = (𝐴 ·s 0s ))
21eleq1d 2820 . . . 4 (𝑛 = 0s → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s 0s ) ∈ ℕ0s))
32imbi2d 340 . . 3 (𝑛 = 0s → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s 0s ) ∈ ℕ0s)))
4 oveq2 7418 . . . . 5 (𝑛 = 𝑚 → (𝐴 ·s 𝑛) = (𝐴 ·s 𝑚))
54eleq1d 2820 . . . 4 (𝑛 = 𝑚 → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s 𝑚) ∈ ℕ0s))
65imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s 𝑚) ∈ ℕ0s)))
7 oveq2 7418 . . . . 5 (𝑛 = (𝑚 +s 1s ) → (𝐴 ·s 𝑛) = (𝐴 ·s (𝑚 +s 1s )))
87eleq1d 2820 . . . 4 (𝑛 = (𝑚 +s 1s ) → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s))
98imbi2d 340 . . 3 (𝑛 = (𝑚 +s 1s ) → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)))
10 oveq2 7418 . . . . 5 (𝑛 = 𝐵 → (𝐴 ·s 𝑛) = (𝐴 ·s 𝐵))
1110eleq1d 2820 . . . 4 (𝑛 = 𝐵 → ((𝐴 ·s 𝑛) ∈ ℕ0s ↔ (𝐴 ·s 𝐵) ∈ ℕ0s))
1211imbi2d 340 . . 3 (𝑛 = 𝐵 → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 ·s 𝐵) ∈ ℕ0s)))
13 n0sno 28273 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
14 muls01 28072 . . . . 5 (𝐴 No → (𝐴 ·s 0s ) = 0s )
1513, 14syl 17 . . . 4 (𝐴 ∈ ℕ0s → (𝐴 ·s 0s ) = 0s )
16 0n0s 28279 . . . 4 0s ∈ ℕ0s
1715, 16eqeltrdi 2843 . . 3 (𝐴 ∈ ℕ0s → (𝐴 ·s 0s ) ∈ ℕ0s)
1813ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → 𝐴 No )
19 n0sno 28273 . . . . . . . . . 10 (𝑚 ∈ ℕ0s𝑚 No )
2019ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → 𝑚 No )
21 1sno 27796 . . . . . . . . . 10 1s No
2221a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → 1s No )
2318, 20, 22addsdid 28116 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ·s (𝑚 +s 1s )) = ((𝐴 ·s 𝑚) +s (𝐴 ·s 1s )))
2413mulsridd 28074 . . . . . . . . . 10 (𝐴 ∈ ℕ0s → (𝐴 ·s 1s ) = 𝐴)
2524oveq2d 7426 . . . . . . . . 9 (𝐴 ∈ ℕ0s → ((𝐴 ·s 𝑚) +s (𝐴 ·s 1s )) = ((𝐴 ·s 𝑚) +s 𝐴))
2625ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s (𝐴 ·s 1s )) = ((𝐴 ·s 𝑚) +s 𝐴))
2723, 26eqtrd 2771 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ·s (𝑚 +s 1s )) = ((𝐴 ·s 𝑚) +s 𝐴))
28 n0addscl 28293 . . . . . . . . 9 (((𝐴 ·s 𝑚) ∈ ℕ0s𝐴 ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s 𝐴) ∈ ℕ0s)
2928ancoms 458 . . . . . . . 8 ((𝐴 ∈ ℕ0s ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s 𝐴) ∈ ℕ0s)
3029adantlr 715 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → ((𝐴 ·s 𝑚) +s 𝐴) ∈ ℕ0s)
3127, 30eqeltrd 2835 . . . . . 6 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)
3231ex 412 . . . . 5 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → ((𝐴 ·s 𝑚) ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s))
3332expcom 413 . . . 4 (𝑚 ∈ ℕ0s → (𝐴 ∈ ℕ0s → ((𝐴 ·s 𝑚) ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)))
3433a2d 29 . . 3 (𝑚 ∈ ℕ0s → ((𝐴 ∈ ℕ0s → (𝐴 ·s 𝑚) ∈ ℕ0s) → (𝐴 ∈ ℕ0s → (𝐴 ·s (𝑚 +s 1s )) ∈ ℕ0s)))
353, 6, 9, 12, 17, 34n0sind 28282 . 2 (𝐵 ∈ ℕ0s → (𝐴 ∈ ℕ0s → (𝐴 ·s 𝐵) ∈ ℕ0s))
3635impcom 407 1 ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7410   No csur 27608   0s c0s 27791   1s c1s 27792   +s cadds 27923   ·s cmuls 28066  0scnn0s 28263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067  df-n0s 28265
This theorem is referenced by:  nnmulscl  28296  eucliddivs  28322  n0expscl  28375  addhalfcut  28391  zs12ge0  28399
  Copyright terms: Public domain W3C validator