MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0addscl Structured version   Visualization version   GIF version

Theorem n0addscl 28236
Description: The non-negative surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0addscl ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 +s 𝐵) ∈ ℕ0s)

Proof of Theorem n0addscl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . 5 (𝑛 = 0s → (𝐴 +s 𝑛) = (𝐴 +s 0s ))
21eleq1d 2813 . . . 4 (𝑛 = 0s → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s 0s ) ∈ ℕ0s))
32imbi2d 340 . . 3 (𝑛 = 0s → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s 0s ) ∈ ℕ0s)))
4 oveq2 7395 . . . . 5 (𝑛 = 𝑚 → (𝐴 +s 𝑛) = (𝐴 +s 𝑚))
54eleq1d 2813 . . . 4 (𝑛 = 𝑚 → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s 𝑚) ∈ ℕ0s))
65imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s 𝑚) ∈ ℕ0s)))
7 oveq2 7395 . . . . 5 (𝑛 = (𝑚 +s 1s ) → (𝐴 +s 𝑛) = (𝐴 +s (𝑚 +s 1s )))
87eleq1d 2813 . . . 4 (𝑛 = (𝑚 +s 1s ) → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s))
98imbi2d 340 . . 3 (𝑛 = (𝑚 +s 1s ) → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)))
10 oveq2 7395 . . . . 5 (𝑛 = 𝐵 → (𝐴 +s 𝑛) = (𝐴 +s 𝐵))
1110eleq1d 2813 . . . 4 (𝑛 = 𝐵 → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s 𝐵) ∈ ℕ0s))
1211imbi2d 340 . . 3 (𝑛 = 𝐵 → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s 𝐵) ∈ ℕ0s)))
13 n0sno 28216 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
1413addsridd 27872 . . . 4 (𝐴 ∈ ℕ0s → (𝐴 +s 0s ) = 𝐴)
15 id 22 . . . 4 (𝐴 ∈ ℕ0s𝐴 ∈ ℕ0s)
1614, 15eqeltrd 2828 . . 3 (𝐴 ∈ ℕ0s → (𝐴 +s 0s ) ∈ ℕ0s)
1713adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → 𝐴 No )
1817adantr 480 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → 𝐴 No )
19 n0sno 28216 . . . . . . . . . 10 (𝑚 ∈ ℕ0s𝑚 No )
2019adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → 𝑚 No )
2120adantr 480 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → 𝑚 No )
22 1sno 27739 . . . . . . . . 9 1s No
2322a1i 11 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → 1s No )
2418, 21, 23addsassd 27913 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → ((𝐴 +s 𝑚) +s 1s ) = (𝐴 +s (𝑚 +s 1s )))
25 peano2n0s 28223 . . . . . . . 8 ((𝐴 +s 𝑚) ∈ ℕ0s → ((𝐴 +s 𝑚) +s 1s ) ∈ ℕ0s)
2625adantl 481 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → ((𝐴 +s 𝑚) +s 1s ) ∈ ℕ0s)
2724, 26eqeltrrd 2829 . . . . . 6 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)
2827ex 412 . . . . 5 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → ((𝐴 +s 𝑚) ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s))
2928expcom 413 . . . 4 (𝑚 ∈ ℕ0s → (𝐴 ∈ ℕ0s → ((𝐴 +s 𝑚) ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)))
3029a2d 29 . . 3 (𝑚 ∈ ℕ0s → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑚) ∈ ℕ0s) → (𝐴 ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)))
313, 6, 9, 12, 16, 30n0sind 28225 . 2 (𝐵 ∈ ℕ0s → (𝐴 ∈ ℕ0s → (𝐴 +s 𝐵) ∈ ℕ0s))
3231impcom 407 1 ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 +s 𝐵) ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387   No csur 27551   0s c0s 27734   1s c1s 27735   +s cadds 27866  0scnn0s 28206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec2 27856  df-adds 27867  df-n0s 28208
This theorem is referenced by:  n0mulscl  28237  nnaddscl  28238  expadds  28320  addhalfcut  28334  zs12ge0  28342
  Copyright terms: Public domain W3C validator