MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0addscl Structured version   Visualization version   GIF version

Theorem n0addscl 28292
Description: The non-negative surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0addscl ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 +s 𝐵) ∈ ℕ0s)

Proof of Theorem n0addscl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7363 . . . . 5 (𝑛 = 0s → (𝐴 +s 𝑛) = (𝐴 +s 0s ))
21eleq1d 2818 . . . 4 (𝑛 = 0s → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s 0s ) ∈ ℕ0s))
32imbi2d 340 . . 3 (𝑛 = 0s → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s 0s ) ∈ ℕ0s)))
4 oveq2 7363 . . . . 5 (𝑛 = 𝑚 → (𝐴 +s 𝑛) = (𝐴 +s 𝑚))
54eleq1d 2818 . . . 4 (𝑛 = 𝑚 → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s 𝑚) ∈ ℕ0s))
65imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s 𝑚) ∈ ℕ0s)))
7 oveq2 7363 . . . . 5 (𝑛 = (𝑚 +s 1s ) → (𝐴 +s 𝑛) = (𝐴 +s (𝑚 +s 1s )))
87eleq1d 2818 . . . 4 (𝑛 = (𝑚 +s 1s ) → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s))
98imbi2d 340 . . 3 (𝑛 = (𝑚 +s 1s ) → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)))
10 oveq2 7363 . . . . 5 (𝑛 = 𝐵 → (𝐴 +s 𝑛) = (𝐴 +s 𝐵))
1110eleq1d 2818 . . . 4 (𝑛 = 𝐵 → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s 𝐵) ∈ ℕ0s))
1211imbi2d 340 . . 3 (𝑛 = 𝐵 → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s 𝐵) ∈ ℕ0s)))
13 n0sno 28272 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
1413addsridd 27928 . . . 4 (𝐴 ∈ ℕ0s → (𝐴 +s 0s ) = 𝐴)
15 id 22 . . . 4 (𝐴 ∈ ℕ0s𝐴 ∈ ℕ0s)
1614, 15eqeltrd 2833 . . 3 (𝐴 ∈ ℕ0s → (𝐴 +s 0s ) ∈ ℕ0s)
1713adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → 𝐴 No )
1817adantr 480 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → 𝐴 No )
19 n0sno 28272 . . . . . . . . . 10 (𝑚 ∈ ℕ0s𝑚 No )
2019adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → 𝑚 No )
2120adantr 480 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → 𝑚 No )
22 1sno 27791 . . . . . . . . 9 1s No
2322a1i 11 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → 1s No )
2418, 21, 23addsassd 27969 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → ((𝐴 +s 𝑚) +s 1s ) = (𝐴 +s (𝑚 +s 1s )))
25 peano2n0s 28279 . . . . . . . 8 ((𝐴 +s 𝑚) ∈ ℕ0s → ((𝐴 +s 𝑚) +s 1s ) ∈ ℕ0s)
2625adantl 481 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → ((𝐴 +s 𝑚) +s 1s ) ∈ ℕ0s)
2724, 26eqeltrrd 2834 . . . . . 6 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)
2827ex 412 . . . . 5 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → ((𝐴 +s 𝑚) ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s))
2928expcom 413 . . . 4 (𝑚 ∈ ℕ0s → (𝐴 ∈ ℕ0s → ((𝐴 +s 𝑚) ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)))
3029a2d 29 . . 3 (𝑚 ∈ ℕ0s → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑚) ∈ ℕ0s) → (𝐴 ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)))
313, 6, 9, 12, 16, 30n0sind 28281 . 2 (𝐵 ∈ ℕ0s → (𝐴 ∈ ℕ0s → (𝐴 +s 𝐵) ∈ ℕ0s))
3231impcom 407 1 ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 +s 𝐵) ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  (class class class)co 7355   No csur 27598   0s c0s 27786   1s c1s 27787   +s cadds 27922  0scnn0s 28262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-nadd 8590  df-no 27601  df-slt 27602  df-bday 27603  df-sle 27704  df-sslt 27741  df-scut 27743  df-0s 27788  df-1s 27789  df-made 27808  df-old 27809  df-left 27811  df-right 27812  df-norec2 27912  df-adds 27923  df-n0s 28264
This theorem is referenced by:  n0mulscl  28293  nnaddscl  28294  expadds  28378  pw2divscan4d  28387  addhalfcut  28399  zs12addscl  28407  zs12ge0  28413
  Copyright terms: Public domain W3C validator