MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0addscl Structured version   Visualization version   GIF version

Theorem n0addscl 28347
Description: The non-negative surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0addscl ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 +s 𝐵) ∈ ℕ0s)

Proof of Theorem n0addscl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑛 = 0s → (𝐴 +s 𝑛) = (𝐴 +s 0s ))
21eleq1d 2826 . . . 4 (𝑛 = 0s → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s 0s ) ∈ ℕ0s))
32imbi2d 340 . . 3 (𝑛 = 0s → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s 0s ) ∈ ℕ0s)))
4 oveq2 7439 . . . . 5 (𝑛 = 𝑚 → (𝐴 +s 𝑛) = (𝐴 +s 𝑚))
54eleq1d 2826 . . . 4 (𝑛 = 𝑚 → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s 𝑚) ∈ ℕ0s))
65imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s 𝑚) ∈ ℕ0s)))
7 oveq2 7439 . . . . 5 (𝑛 = (𝑚 +s 1s ) → (𝐴 +s 𝑛) = (𝐴 +s (𝑚 +s 1s )))
87eleq1d 2826 . . . 4 (𝑛 = (𝑚 +s 1s ) → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s))
98imbi2d 340 . . 3 (𝑛 = (𝑚 +s 1s ) → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)))
10 oveq2 7439 . . . . 5 (𝑛 = 𝐵 → (𝐴 +s 𝑛) = (𝐴 +s 𝐵))
1110eleq1d 2826 . . . 4 (𝑛 = 𝐵 → ((𝐴 +s 𝑛) ∈ ℕ0s ↔ (𝐴 +s 𝐵) ∈ ℕ0s))
1211imbi2d 340 . . 3 (𝑛 = 𝐵 → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑛) ∈ ℕ0s) ↔ (𝐴 ∈ ℕ0s → (𝐴 +s 𝐵) ∈ ℕ0s)))
13 n0sno 28328 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
1413addsridd 27998 . . . 4 (𝐴 ∈ ℕ0s → (𝐴 +s 0s ) = 𝐴)
15 id 22 . . . 4 (𝐴 ∈ ℕ0s𝐴 ∈ ℕ0s)
1614, 15eqeltrd 2841 . . 3 (𝐴 ∈ ℕ0s → (𝐴 +s 0s ) ∈ ℕ0s)
1713adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → 𝐴 No )
1817adantr 480 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → 𝐴 No )
19 n0sno 28328 . . . . . . . . . 10 (𝑚 ∈ ℕ0s𝑚 No )
2019adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → 𝑚 No )
2120adantr 480 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → 𝑚 No )
22 1sno 27872 . . . . . . . . 9 1s No
2322a1i 11 . . . . . . . 8 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → 1s No )
2418, 21, 23addsassd 28039 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → ((𝐴 +s 𝑚) +s 1s ) = (𝐴 +s (𝑚 +s 1s )))
25 peano2n0s 28335 . . . . . . . 8 ((𝐴 +s 𝑚) ∈ ℕ0s → ((𝐴 +s 𝑚) +s 1s ) ∈ ℕ0s)
2625adantl 481 . . . . . . 7 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → ((𝐴 +s 𝑚) +s 1s ) ∈ ℕ0s)
2724, 26eqeltrrd 2842 . . . . . 6 (((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) ∧ (𝐴 +s 𝑚) ∈ ℕ0s) → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)
2827ex 412 . . . . 5 ((𝐴 ∈ ℕ0s𝑚 ∈ ℕ0s) → ((𝐴 +s 𝑚) ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s))
2928expcom 413 . . . 4 (𝑚 ∈ ℕ0s → (𝐴 ∈ ℕ0s → ((𝐴 +s 𝑚) ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)))
3029a2d 29 . . 3 (𝑚 ∈ ℕ0s → ((𝐴 ∈ ℕ0s → (𝐴 +s 𝑚) ∈ ℕ0s) → (𝐴 ∈ ℕ0s → (𝐴 +s (𝑚 +s 1s )) ∈ ℕ0s)))
313, 6, 9, 12, 16, 30n0sind 28337 . 2 (𝐵 ∈ ℕ0s → (𝐴 ∈ ℕ0s → (𝐴 +s 𝐵) ∈ ℕ0s))
3231impcom 407 1 ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 +s 𝐵) ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  (class class class)co 7431   No csur 27684   0s c0s 27867   1s c1s 27868   +s cadds 27992  0scnn0s 28318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-nadd 8704  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-0s 27869  df-1s 27870  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec2 27982  df-adds 27993  df-n0s 28320
This theorem is referenced by:  n0mulscl  28348  nnaddscl  28349  addhalfcut  28419
  Copyright terms: Public domain W3C validator