MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmulscld Structured version   Visualization version   GIF version

Theorem zmulscld 28319
Description: The surreal integers are closed under multiplication. (Contributed by Scott Fenton, 20-Aug-2025.)
Hypotheses
Ref Expression
zmulscld.1 (𝜑𝐴 ∈ ℤs)
zmulscld.2 (𝜑𝐵 ∈ ℤs)
Assertion
Ref Expression
zmulscld (𝜑 → (𝐴 ·s 𝐵) ∈ ℤs)

Proof of Theorem zmulscld
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zmulscld.1 . . 3 (𝜑𝐴 ∈ ℤs)
2 elzs 28306 . . 3 (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
31, 2sylib 218 . 2 (𝜑 → ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
4 zmulscld.2 . . 3 (𝜑𝐵 ∈ ℤs)
5 elzs 28306 . . 3 (𝐵 ∈ ℤs ↔ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤))
64, 5sylib 218 . 2 (𝜑 → ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤))
7 reeanv 3216 . . . . 5 (∃𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
872rexbii 3116 . . . 4 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ ∃𝑥 ∈ ℕs𝑧 ∈ ℕs (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
9 reeanv 3216 . . . 4 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
108, 9bitri 275 . . 3 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
11 nnsno 28265 . . . . . . . . . . 11 (𝑥 ∈ ℕs𝑥 No )
1211ad2antrr 726 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑥 No )
13 nnsno 28265 . . . . . . . . . . 11 (𝑦 ∈ ℕs𝑦 No )
1413ad2antrl 728 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑦 No )
1512, 14subscld 28029 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑥 -s 𝑦) ∈ No )
16 nnsno 28265 . . . . . . . . . 10 (𝑧 ∈ ℕs𝑧 No )
1716ad2antlr 727 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑧 No )
18 nnsno 28265 . . . . . . . . . 10 (𝑤 ∈ ℕs𝑤 No )
1918ad2antll 729 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑤 No )
2015, 17, 19subsdid 28120 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) ·s (𝑧 -s 𝑤)) = (((𝑥 -s 𝑦) ·s 𝑧) -s ((𝑥 -s 𝑦) ·s 𝑤)))
21 nnmulscl 28286 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕs𝑧 ∈ ℕs) → (𝑥 ·s 𝑧) ∈ ℕs)
2221adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑥 ·s 𝑧) ∈ ℕs)
2322nnsnod 28267 . . . . . . . . . . 11 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑥 ·s 𝑧) ∈ No )
24 simprl 770 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑦 ∈ ℕs)
25 simplr 768 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑧 ∈ ℕs)
26 nnmulscl 28286 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕs𝑧 ∈ ℕs) → (𝑦 ·s 𝑧) ∈ ℕs)
2724, 25, 26syl2anc 584 . . . . . . . . . . . 12 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑦 ·s 𝑧) ∈ ℕs)
2827nnsnod 28267 . . . . . . . . . . 11 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑦 ·s 𝑧) ∈ No )
2923, 28subscld 28029 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)) ∈ No )
30 nnmulscl 28286 . . . . . . . . . . . 12 ((𝑥 ∈ ℕs𝑤 ∈ ℕs) → (𝑥 ·s 𝑤) ∈ ℕs)
3130ad2ant2rl 749 . . . . . . . . . . 11 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑥 ·s 𝑤) ∈ ℕs)
3231nnsnod 28267 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑥 ·s 𝑤) ∈ No )
33 nnmulscl 28286 . . . . . . . . . . . 12 ((𝑦 ∈ ℕs𝑤 ∈ ℕs) → (𝑦 ·s 𝑤) ∈ ℕs)
3433adantl 481 . . . . . . . . . . 11 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑦 ·s 𝑤) ∈ ℕs)
3534nnsnod 28267 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑦 ·s 𝑤) ∈ No )
3629, 32, 35subsubs2d 28061 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)) -s ((𝑥 ·s 𝑤) -s (𝑦 ·s 𝑤))) = (((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)) +s ((𝑦 ·s 𝑤) -s (𝑥 ·s 𝑤))))
3712, 14, 17subsdird 28121 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) ·s 𝑧) = ((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)))
3812, 14, 19subsdird 28121 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) ·s 𝑤) = ((𝑥 ·s 𝑤) -s (𝑦 ·s 𝑤)))
3937, 38oveq12d 7431 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (((𝑥 -s 𝑦) ·s 𝑧) -s ((𝑥 -s 𝑦) ·s 𝑤)) = (((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)) -s ((𝑥 ·s 𝑤) -s (𝑦 ·s 𝑤))))
4023, 35, 28, 32addsubs4d 28066 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)) +s ((𝑦 ·s 𝑤) -s (𝑥 ·s 𝑤))))
4136, 39, 403eqtr4d 2779 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (((𝑥 -s 𝑦) ·s 𝑧) -s ((𝑥 -s 𝑦) ·s 𝑤)) = (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))))
4220, 41eqtrd 2769 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) ·s (𝑧 -s 𝑤)) = (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))))
43 nnaddscl 28285 . . . . . . . . . 10 (((𝑥 ·s 𝑧) ∈ ℕs ∧ (𝑦 ·s 𝑤) ∈ ℕs) → ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) ∈ ℕs)
4422, 34, 43syl2anc 584 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) ∈ ℕs)
45 nnaddscl 28285 . . . . . . . . . 10 (((𝑦 ·s 𝑧) ∈ ℕs ∧ (𝑥 ·s 𝑤) ∈ ℕs) → ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)) ∈ ℕs)
4627, 31, 45syl2anc 584 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)) ∈ ℕs)
47 eqid 2734 . . . . . . . . . 10 (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)))
48 rspceov 7462 . . . . . . . . . 10 ((((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) ∈ ℕs ∧ ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)) ∈ ℕs ∧ (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)))) → ∃𝑡 ∈ ℕs𝑢 ∈ ℕs (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (𝑡 -s 𝑢))
4947, 48mp3an3 1451 . . . . . . . . 9 ((((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) ∈ ℕs ∧ ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)) ∈ ℕs) → ∃𝑡 ∈ ℕs𝑢 ∈ ℕs (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (𝑡 -s 𝑢))
5044, 46, 49syl2anc 584 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ∃𝑡 ∈ ℕs𝑢 ∈ ℕs (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (𝑡 -s 𝑢))
51 elzs 28306 . . . . . . . 8 ((((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) ∈ ℤs ↔ ∃𝑡 ∈ ℕs𝑢 ∈ ℕs (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (𝑡 -s 𝑢))
5250, 51sylibr 234 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) ∈ ℤs)
5342, 52eqeltrd 2833 . . . . . 6 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) ·s (𝑧 -s 𝑤)) ∈ ℤs)
54 oveq12 7422 . . . . . . 7 ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 ·s 𝐵) = ((𝑥 -s 𝑦) ·s (𝑧 -s 𝑤)))
5554eleq1d 2818 . . . . . 6 ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → ((𝐴 ·s 𝐵) ∈ ℤs ↔ ((𝑥 -s 𝑦) ·s (𝑧 -s 𝑤)) ∈ ℤs))
5653, 55syl5ibrcom 247 . . . . 5 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 ·s 𝐵) ∈ ℤs))
5756rexlimdvva 3200 . . . 4 ((𝑥 ∈ ℕs𝑧 ∈ ℕs) → (∃𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 ·s 𝐵) ∈ ℤs))
5857rexlimivv 3188 . . 3 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 ·s 𝐵) ∈ ℤs)
5910, 58sylbir 235 . 2 ((∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)) → (𝐴 ·s 𝐵) ∈ ℤs)
603, 6, 59syl2anc 584 1 (𝜑 → (𝐴 ·s 𝐵) ∈ ℤs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3059  (class class class)co 7413   No csur 27620   +s cadds 27928   -s csubs 27988   ·s cmuls 28068  scnns 28255  sczs 28300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-nadd 8686  df-no 27623  df-slt 27624  df-bday 27625  df-sle 27726  df-sslt 27762  df-scut 27764  df-0s 27805  df-1s 27806  df-made 27822  df-old 27823  df-left 27825  df-right 27826  df-norec 27907  df-norec2 27918  df-adds 27929  df-negs 27989  df-subs 27990  df-muls 28069  df-n0s 28256  df-nns 28257  df-zs 28301
This theorem is referenced by:  zs12bday  28360
  Copyright terms: Public domain W3C validator