MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmulscld Structured version   Visualization version   GIF version

Theorem zmulscld 28291
Description: The surreal integers are closed under multiplication. (Contributed by Scott Fenton, 20-Aug-2025.)
Hypotheses
Ref Expression
zmulscld.1 (𝜑𝐴 ∈ ℤs)
zmulscld.2 (𝜑𝐵 ∈ ℤs)
Assertion
Ref Expression
zmulscld (𝜑 → (𝐴 ·s 𝐵) ∈ ℤs)

Proof of Theorem zmulscld
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zmulscld.1 . . 3 (𝜑𝐴 ∈ ℤs)
2 elzs 28278 . . 3 (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
31, 2sylib 218 . 2 (𝜑 → ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
4 zmulscld.2 . . 3 (𝜑𝐵 ∈ ℤs)
5 elzs 28278 . . 3 (𝐵 ∈ ℤs ↔ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤))
64, 5sylib 218 . 2 (𝜑 → ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤))
7 reeanv 3210 . . . . 5 (∃𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
872rexbii 3110 . . . 4 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ ∃𝑥 ∈ ℕs𝑧 ∈ ℕs (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
9 reeanv 3210 . . . 4 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
108, 9bitri 275 . . 3 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
11 nnsno 28223 . . . . . . . . . . 11 (𝑥 ∈ ℕs𝑥 No )
1211ad2antrr 726 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑥 No )
13 nnsno 28223 . . . . . . . . . . 11 (𝑦 ∈ ℕs𝑦 No )
1413ad2antrl 728 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑦 No )
1512, 14subscld 27973 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑥 -s 𝑦) ∈ No )
16 nnsno 28223 . . . . . . . . . 10 (𝑧 ∈ ℕs𝑧 No )
1716ad2antlr 727 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑧 No )
18 nnsno 28223 . . . . . . . . . 10 (𝑤 ∈ ℕs𝑤 No )
1918ad2antll 729 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑤 No )
2015, 17, 19subsdid 28067 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) ·s (𝑧 -s 𝑤)) = (((𝑥 -s 𝑦) ·s 𝑧) -s ((𝑥 -s 𝑦) ·s 𝑤)))
21 nnmulscl 28245 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕs𝑧 ∈ ℕs) → (𝑥 ·s 𝑧) ∈ ℕs)
2221adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑥 ·s 𝑧) ∈ ℕs)
2322nnsnod 28225 . . . . . . . . . . 11 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑥 ·s 𝑧) ∈ No )
24 simprl 770 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑦 ∈ ℕs)
25 simplr 768 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑧 ∈ ℕs)
26 nnmulscl 28245 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕs𝑧 ∈ ℕs) → (𝑦 ·s 𝑧) ∈ ℕs)
2724, 25, 26syl2anc 584 . . . . . . . . . . . 12 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑦 ·s 𝑧) ∈ ℕs)
2827nnsnod 28225 . . . . . . . . . . 11 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑦 ·s 𝑧) ∈ No )
2923, 28subscld 27973 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)) ∈ No )
30 nnmulscl 28245 . . . . . . . . . . . 12 ((𝑥 ∈ ℕs𝑤 ∈ ℕs) → (𝑥 ·s 𝑤) ∈ ℕs)
3130ad2ant2rl 749 . . . . . . . . . . 11 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑥 ·s 𝑤) ∈ ℕs)
3231nnsnod 28225 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑥 ·s 𝑤) ∈ No )
33 nnmulscl 28245 . . . . . . . . . . . 12 ((𝑦 ∈ ℕs𝑤 ∈ ℕs) → (𝑦 ·s 𝑤) ∈ ℕs)
3433adantl 481 . . . . . . . . . . 11 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑦 ·s 𝑤) ∈ ℕs)
3534nnsnod 28225 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (𝑦 ·s 𝑤) ∈ No )
3629, 32, 35subsubs2d 28005 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)) -s ((𝑥 ·s 𝑤) -s (𝑦 ·s 𝑤))) = (((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)) +s ((𝑦 ·s 𝑤) -s (𝑥 ·s 𝑤))))
3712, 14, 17subsdird 28068 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) ·s 𝑧) = ((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)))
3812, 14, 19subsdird 28068 . . . . . . . . . 10 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) ·s 𝑤) = ((𝑥 ·s 𝑤) -s (𝑦 ·s 𝑤)))
3937, 38oveq12d 7407 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (((𝑥 -s 𝑦) ·s 𝑧) -s ((𝑥 -s 𝑦) ·s 𝑤)) = (((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)) -s ((𝑥 ·s 𝑤) -s (𝑦 ·s 𝑤))))
4023, 35, 28, 32addsubs4d 28010 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (((𝑥 ·s 𝑧) -s (𝑦 ·s 𝑧)) +s ((𝑦 ·s 𝑤) -s (𝑥 ·s 𝑤))))
4136, 39, 403eqtr4d 2775 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (((𝑥 -s 𝑦) ·s 𝑧) -s ((𝑥 -s 𝑦) ·s 𝑤)) = (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))))
4220, 41eqtrd 2765 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) ·s (𝑧 -s 𝑤)) = (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))))
43 nnaddscl 28244 . . . . . . . . . 10 (((𝑥 ·s 𝑧) ∈ ℕs ∧ (𝑦 ·s 𝑤) ∈ ℕs) → ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) ∈ ℕs)
4422, 34, 43syl2anc 584 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) ∈ ℕs)
45 nnaddscl 28244 . . . . . . . . . 10 (((𝑦 ·s 𝑧) ∈ ℕs ∧ (𝑥 ·s 𝑤) ∈ ℕs) → ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)) ∈ ℕs)
4627, 31, 45syl2anc 584 . . . . . . . . 9 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)) ∈ ℕs)
47 eqid 2730 . . . . . . . . . 10 (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)))
48 rspceov 7438 . . . . . . . . . 10 ((((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) ∈ ℕs ∧ ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)) ∈ ℕs ∧ (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)))) → ∃𝑡 ∈ ℕs𝑢 ∈ ℕs (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (𝑡 -s 𝑢))
4947, 48mp3an3 1452 . . . . . . . . 9 ((((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) ∈ ℕs ∧ ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤)) ∈ ℕs) → ∃𝑡 ∈ ℕs𝑢 ∈ ℕs (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (𝑡 -s 𝑢))
5044, 46, 49syl2anc 584 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ∃𝑡 ∈ ℕs𝑢 ∈ ℕs (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (𝑡 -s 𝑢))
51 elzs 28278 . . . . . . . 8 ((((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) ∈ ℤs ↔ ∃𝑡 ∈ ℕs𝑢 ∈ ℕs (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) = (𝑡 -s 𝑢))
5250, 51sylibr 234 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → (((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑤)) -s ((𝑦 ·s 𝑧) +s (𝑥 ·s 𝑤))) ∈ ℤs)
5342, 52eqeltrd 2829 . . . . . 6 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) ·s (𝑧 -s 𝑤)) ∈ ℤs)
54 oveq12 7398 . . . . . . 7 ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 ·s 𝐵) = ((𝑥 -s 𝑦) ·s (𝑧 -s 𝑤)))
5554eleq1d 2814 . . . . . 6 ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → ((𝐴 ·s 𝐵) ∈ ℤs ↔ ((𝑥 -s 𝑦) ·s (𝑧 -s 𝑤)) ∈ ℤs))
5653, 55syl5ibrcom 247 . . . . 5 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 ·s 𝐵) ∈ ℤs))
5756rexlimdvva 3195 . . . 4 ((𝑥 ∈ ℕs𝑧 ∈ ℕs) → (∃𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 ·s 𝐵) ∈ ℤs))
5857rexlimivv 3180 . . 3 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 ·s 𝐵) ∈ ℤs)
5910, 58sylbir 235 . 2 ((∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)) → (𝐴 ·s 𝐵) ∈ ℤs)
603, 6, 59syl2anc 584 1 (𝜑 → (𝐴 ·s 𝐵) ∈ ℤs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  (class class class)co 7389   No csur 27557   +s cadds 27872   -s csubs 27932   ·s cmuls 28015  scnns 28213  sczs 28272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-nadd 8632  df-no 27560  df-slt 27561  df-bday 27562  df-sle 27663  df-sslt 27699  df-scut 27701  df-0s 27742  df-1s 27743  df-made 27761  df-old 27762  df-left 27764  df-right 27765  df-norec 27851  df-norec2 27862  df-adds 27873  df-negs 27933  df-subs 27934  df-muls 28016  df-n0s 28214  df-nns 28215  df-zs 28273
This theorem is referenced by:  pw2cutp1  28342  zs12bday  28349
  Copyright terms: Public domain W3C validator