MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zaddscl Structured version   Visualization version   GIF version

Theorem zaddscl 28398
Description: The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
zaddscl ((𝐴 ∈ ℤs𝐵 ∈ ℤs) → (𝐴 +s 𝐵) ∈ ℤs)

Proof of Theorem zaddscl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3235 . . 3 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
2 reeanv 3235 . . . 4 (∃𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
322rexbii 3135 . . 3 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ ∃𝑥 ∈ ℕs𝑧 ∈ ℕs (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
4 elzs 28388 . . . 4 (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
5 elzs 28388 . . . 4 (𝐵 ∈ ℤs ↔ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤))
64, 5anbi12i 627 . . 3 ((𝐴 ∈ ℤs𝐵 ∈ ℤs) ↔ (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
71, 3, 63bitr4ri 304 . 2 ((𝐴 ∈ ℤs𝐵 ∈ ℤs) ↔ ∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)))
8 simpll 766 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑥 ∈ ℕs)
98nnsnod 28349 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑥 No )
10 simplr 768 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑧 ∈ ℕs)
1110nnsnod 28349 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑧 No )
12 simprl 770 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑦 ∈ ℕs)
1312nnsnod 28349 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑦 No )
14 simprr 772 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑤 ∈ ℕs)
1514nnsnod 28349 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑤 No )
169, 11, 13, 15addsubs4d 28148 . . . . . 6 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 +s 𝑧) -s (𝑦 +s 𝑤)) = ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤)))
17 nnaddscl 28367 . . . . . . 7 ((𝑥 ∈ ℕs𝑧 ∈ ℕs) → (𝑥 +s 𝑧) ∈ ℕs)
18 nnaddscl 28367 . . . . . . 7 ((𝑦 ∈ ℕs𝑤 ∈ ℕs) → (𝑦 +s 𝑤) ∈ ℕs)
19 nnzsubs 28389 . . . . . . 7 (((𝑥 +s 𝑧) ∈ ℕs ∧ (𝑦 +s 𝑤) ∈ ℕs) → ((𝑥 +s 𝑧) -s (𝑦 +s 𝑤)) ∈ ℤs)
2017, 18, 19syl2an 595 . . . . . 6 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 +s 𝑧) -s (𝑦 +s 𝑤)) ∈ ℤs)
2116, 20eqeltrrd 2845 . . . . 5 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤)) ∈ ℤs)
22 oveq12 7457 . . . . . 6 ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) = ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤)))
2322eleq1d 2829 . . . . 5 ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → ((𝐴 +s 𝐵) ∈ ℤs ↔ ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤)) ∈ ℤs))
2421, 23syl5ibrcom 247 . . . 4 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) ∈ ℤs))
2524rexlimdvva 3219 . . 3 ((𝑥 ∈ ℕs𝑧 ∈ ℕs) → (∃𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) ∈ ℤs))
2625rexlimivv 3207 . 2 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) ∈ ℤs)
277, 26sylbi 217 1 ((𝐴 ∈ ℤs𝐵 ∈ ℤs) → (𝐴 +s 𝐵) ∈ ℤs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  (class class class)co 7448   +s cadds 28010   -s csubs 28070  scnns 28337  sczs 28382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-n0s 28338  df-nns 28339  df-zs 28383
This theorem is referenced by:  zaddscld  28399
  Copyright terms: Public domain W3C validator