MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zaddscl Structured version   Visualization version   GIF version

Theorem zaddscl 28328
Description: The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
zaddscl ((𝐴 ∈ ℤs𝐵 ∈ ℤs) → (𝐴 +s 𝐵) ∈ ℤs)

Proof of Theorem zaddscl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3206 . . 3 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
2 reeanv 3206 . . . 4 (∃𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
322rexbii 3110 . . 3 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ ∃𝑥 ∈ ℕs𝑧 ∈ ℕs (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
4 elzs 28318 . . . 4 (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
5 elzs 28318 . . . 4 (𝐵 ∈ ℤs ↔ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤))
64, 5anbi12i 628 . . 3 ((𝐴 ∈ ℤs𝐵 ∈ ℤs) ↔ (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)))
71, 3, 63bitr4ri 304 . 2 ((𝐴 ∈ ℤs𝐵 ∈ ℤs) ↔ ∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)))
8 simpll 766 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑥 ∈ ℕs)
98nnsnod 28265 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑥 No )
10 simplr 768 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑧 ∈ ℕs)
1110nnsnod 28265 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑧 No )
12 simprl 770 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑦 ∈ ℕs)
1312nnsnod 28265 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑦 No )
14 simprr 772 . . . . . . . 8 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑤 ∈ ℕs)
1514nnsnod 28265 . . . . . . 7 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → 𝑤 No )
169, 11, 13, 15addsubs4d 28050 . . . . . 6 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 +s 𝑧) -s (𝑦 +s 𝑤)) = ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤)))
17 nnaddscl 28284 . . . . . . 7 ((𝑥 ∈ ℕs𝑧 ∈ ℕs) → (𝑥 +s 𝑧) ∈ ℕs)
18 nnaddscl 28284 . . . . . . 7 ((𝑦 ∈ ℕs𝑤 ∈ ℕs) → (𝑦 +s 𝑤) ∈ ℕs)
19 nnzsubs 28319 . . . . . . 7 (((𝑥 +s 𝑧) ∈ ℕs ∧ (𝑦 +s 𝑤) ∈ ℕs) → ((𝑥 +s 𝑧) -s (𝑦 +s 𝑤)) ∈ ℤs)
2017, 18, 19syl2an 596 . . . . . 6 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 +s 𝑧) -s (𝑦 +s 𝑤)) ∈ ℤs)
2116, 20eqeltrrd 2834 . . . . 5 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤)) ∈ ℤs)
22 oveq12 7364 . . . . . 6 ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) = ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤)))
2322eleq1d 2818 . . . . 5 ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → ((𝐴 +s 𝐵) ∈ ℤs ↔ ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤)) ∈ ℤs))
2421, 23syl5ibrcom 247 . . . 4 (((𝑥 ∈ ℕs𝑧 ∈ ℕs) ∧ (𝑦 ∈ ℕs𝑤 ∈ ℕs)) → ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) ∈ ℤs))
2524rexlimdvva 3191 . . 3 ((𝑥 ∈ ℕs𝑧 ∈ ℕs) → (∃𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) ∈ ℤs))
2625rexlimivv 3176 . 2 (∃𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) ∈ ℤs)
277, 26sylbi 217 1 ((𝐴 ∈ ℤs𝐵 ∈ ℤs) → (𝐴 +s 𝐵) ∈ ℤs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3058  (class class class)co 7355   +s cadds 27912   -s csubs 27972  scnns 28253  sczs 28312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-nadd 8590  df-no 27591  df-slt 27592  df-bday 27593  df-sle 27694  df-sslt 27731  df-scut 27733  df-0s 27778  df-1s 27779  df-made 27798  df-old 27799  df-left 27801  df-right 27802  df-norec 27891  df-norec2 27902  df-adds 27913  df-negs 27973  df-subs 27974  df-n0s 28254  df-nns 28255  df-zs 28313
This theorem is referenced by:  zaddscld  28329  zsoring  28342  pw2cutp1  28391
  Copyright terms: Public domain W3C validator