Step | Hyp | Ref
| Expression |
1 | | reeanv 3235 |
. . 3
⊢
(∃𝑥 ∈
ℕs ∃𝑧 ∈ ℕs (∃𝑦 ∈ ℕs
𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs
𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs ∃𝑤 ∈ ℕs
𝐵 = (𝑧 -s 𝑤))) |
2 | | reeanv 3235 |
. . . 4
⊢
(∃𝑦 ∈
ℕs ∃𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ (∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤))) |
3 | 2 | 2rexbii 3135 |
. . 3
⊢
(∃𝑥 ∈
ℕs ∃𝑧 ∈ ℕs ∃𝑦 ∈ ℕs
∃𝑤 ∈
ℕs (𝐴 =
(𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) ↔ ∃𝑥 ∈ ℕs ∃𝑧 ∈ ℕs
(∃𝑦 ∈
ℕs 𝐴 =
(𝑥 -s 𝑦) ∧ ∃𝑤 ∈ ℕs
𝐵 = (𝑧 -s 𝑤))) |
4 | | elzs 28388 |
. . . 4
⊢ (𝐴 ∈ ℤs
↔ ∃𝑥 ∈
ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)) |
5 | | elzs 28388 |
. . . 4
⊢ (𝐵 ∈ ℤs
↔ ∃𝑧 ∈
ℕs ∃𝑤 ∈ ℕs 𝐵 = (𝑧 -s 𝑤)) |
6 | 4, 5 | anbi12i 627 |
. . 3
⊢ ((𝐴 ∈ ℤs
∧ 𝐵 ∈
ℤs) ↔ (∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs
𝐴 = (𝑥 -s 𝑦) ∧ ∃𝑧 ∈ ℕs ∃𝑤 ∈ ℕs
𝐵 = (𝑧 -s 𝑤))) |
7 | 1, 3, 6 | 3bitr4ri 304 |
. 2
⊢ ((𝐴 ∈ ℤs
∧ 𝐵 ∈
ℤs) ↔ ∃𝑥 ∈ ℕs ∃𝑧 ∈ ℕs
∃𝑦 ∈
ℕs ∃𝑤 ∈ ℕs (𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤))) |
8 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ 𝑥 ∈
ℕs) |
9 | 8 | nnsnod 28349 |
. . . . . . 7
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ 𝑥 ∈ No ) |
10 | | simplr 768 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ 𝑧 ∈
ℕs) |
11 | 10 | nnsnod 28349 |
. . . . . . 7
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ 𝑧 ∈ No ) |
12 | | simprl 770 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ 𝑦 ∈
ℕs) |
13 | 12 | nnsnod 28349 |
. . . . . . 7
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ 𝑦 ∈ No ) |
14 | | simprr 772 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ 𝑤 ∈
ℕs) |
15 | 14 | nnsnod 28349 |
. . . . . . 7
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ 𝑤 ∈ No ) |
16 | 9, 11, 13, 15 | addsubs4d 28148 |
. . . . . 6
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ ((𝑥 +s
𝑧) -s (𝑦 +s 𝑤)) = ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤))) |
17 | | nnaddscl 28367 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) → (𝑥 +s 𝑧) ∈
ℕs) |
18 | | nnaddscl 28367 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕs
∧ 𝑤 ∈
ℕs) → (𝑦 +s 𝑤) ∈
ℕs) |
19 | | nnzsubs 28389 |
. . . . . . 7
⊢ (((𝑥 +s 𝑧) ∈ ℕs
∧ (𝑦 +s
𝑤) ∈
ℕs) → ((𝑥 +s 𝑧) -s (𝑦 +s 𝑤)) ∈
ℤs) |
20 | 17, 18, 19 | syl2an 595 |
. . . . . 6
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ ((𝑥 +s
𝑧) -s (𝑦 +s 𝑤)) ∈
ℤs) |
21 | 16, 20 | eqeltrrd 2845 |
. . . . 5
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ ((𝑥 -s
𝑦) +s (𝑧 -s 𝑤)) ∈
ℤs) |
22 | | oveq12 7457 |
. . . . . 6
⊢ ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) = ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤))) |
23 | 22 | eleq1d 2829 |
. . . . 5
⊢ ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → ((𝐴 +s 𝐵) ∈ ℤs ↔ ((𝑥 -s 𝑦) +s (𝑧 -s 𝑤)) ∈
ℤs)) |
24 | 21, 23 | syl5ibrcom 247 |
. . . 4
⊢ (((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) ∧ (𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs))
→ ((𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) ∈
ℤs)) |
25 | 24 | rexlimdvva 3219 |
. . 3
⊢ ((𝑥 ∈ ℕs
∧ 𝑧 ∈
ℕs) → (∃𝑦 ∈ ℕs ∃𝑤 ∈ ℕs
(𝐴 = (𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) ∈
ℤs)) |
26 | 25 | rexlimivv 3207 |
. 2
⊢
(∃𝑥 ∈
ℕs ∃𝑧 ∈ ℕs ∃𝑦 ∈ ℕs
∃𝑤 ∈
ℕs (𝐴 =
(𝑥 -s 𝑦) ∧ 𝐵 = (𝑧 -s 𝑤)) → (𝐴 +s 𝐵) ∈
ℤs) |
27 | 7, 26 | sylbi 217 |
1
⊢ ((𝐴 ∈ ℤs
∧ 𝐵 ∈
ℤs) → (𝐴 +s 𝐵) ∈
ℤs) |