Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo2cn Structured version   Visualization version   GIF version

Theorem lptioo2cn 44348
Description: The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo2cn.1 𝐽 = (TopOpen‘ℂfld)
lptioo2cn.2 (𝜑𝐴 ∈ ℝ*)
lptioo2cn.3 (𝜑𝐵 ∈ ℝ)
lptioo2cn.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo2cn (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo2cn
StepHypRef Expression
1 eqid 2733 . . . . . 6 (topGen‘ran (,)) = (topGen‘ran (,))
2 lptioo2cn.2 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3 lptioo2cn.3 . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 lptioo2cn.4 . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 3, 4lptioo2 44334 . . . . 5 (𝜑𝐵 ∈ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
6 eqid 2733 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldtop 24292 . . . . . 6 (TopOpen‘ℂfld) ∈ Top
8 ax-resscn 11164 . . . . . . 7 ℝ ⊆ ℂ
9 unicntop 24294 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
108, 9sseqtri 4018 . . . . . 6 ℝ ⊆ (TopOpen‘ℂfld)
11 ioossre 13382 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
12 eqid 2733 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
136tgioo2 24311 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1412, 13restlp 22679 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ (TopOpen‘ℂfld) ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
157, 10, 11, 14mp3an 1462 . . . . 5 ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)
165, 15eleqtrdi 2844 . . . 4 (𝜑𝐵 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
17 elin 3964 . . . 4 (𝐵 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) ↔ (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐵 ∈ ℝ))
1816, 17sylib 217 . . 3 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐵 ∈ ℝ))
1918simpld 496 . 2 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
20 lptioo2cn.1 . . . . 5 𝐽 = (TopOpen‘ℂfld)
2120eqcomi 2742 . . . 4 (TopOpen‘ℂfld) = 𝐽
2221fveq2i 6892 . . 3 (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐽)
2322fveq1i 6890 . 2 ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) = ((limPt‘𝐽)‘(𝐴(,)𝐵))
2419, 23eleqtrdi 2844 1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cin 3947  wss 3948   cuni 4908   class class class wbr 5148  ran crn 5677  cfv 6541  (class class class)co 7406  cc 11105  cr 11106  *cxr 11244   < clt 11245  (,)cioo 13321  TopOpenctopn 17364  topGenctg 17380  fldccnfld 20937  Topctop 22387  limPtclp 22630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fi 9403  df-sup 9434  df-inf 9435  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-fz 13482  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17142  df-plusg 17207  df-mulr 17208  df-starv 17209  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-rest 17365  df-topn 17366  df-topgen 17386  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-cnfld 20938  df-top 22388  df-topon 22405  df-topsp 22427  df-bases 22441  df-cld 22515  df-ntr 22516  df-cls 22517  df-nei 22594  df-lp 22632  df-xms 23818  df-ms 23819
This theorem is referenced by:  cncfiooiccre  44598  fourierdlem60  44869  fourierdlem74  44883  fourierdlem88  44897  fourierdlem94  44903  fourierdlem95  44904  fourierdlem103  44912  fourierdlem104  44913  fourierdlem113  44922
  Copyright terms: Public domain W3C validator