Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo2cn Structured version   Visualization version   GIF version

Theorem lptioo2cn 45605
Description: The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo2cn.1 𝐽 = (TopOpen‘ℂfld)
lptioo2cn.2 (𝜑𝐴 ∈ ℝ*)
lptioo2cn.3 (𝜑𝐵 ∈ ℝ)
lptioo2cn.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo2cn (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo2cn
StepHypRef Expression
1 eqid 2734 . . . . . 6 (topGen‘ran (,)) = (topGen‘ran (,))
2 lptioo2cn.2 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3 lptioo2cn.3 . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 lptioo2cn.4 . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 3, 4lptioo2 45591 . . . . 5 (𝜑𝐵 ∈ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
6 eqid 2734 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldtop 24759 . . . . . 6 (TopOpen‘ℂfld) ∈ Top
8 ax-resscn 11195 . . . . . . 7 ℝ ⊆ ℂ
9 unicntop 24761 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
108, 9sseqtri 4014 . . . . . 6 ℝ ⊆ (TopOpen‘ℂfld)
11 ioossre 13431 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
12 eqid 2734 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
13 tgioo4 24781 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1412, 13restlp 23156 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ (TopOpen‘ℂfld) ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
157, 10, 11, 14mp3an 1462 . . . . 5 ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)
165, 15eleqtrdi 2843 . . . 4 (𝜑𝐵 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
17 elin 3949 . . . 4 (𝐵 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) ↔ (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐵 ∈ ℝ))
1816, 17sylib 218 . . 3 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐵 ∈ ℝ))
1918simpld 494 . 2 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
20 lptioo2cn.1 . . . . 5 𝐽 = (TopOpen‘ℂfld)
2120eqcomi 2743 . . . 4 (TopOpen‘ℂfld) = 𝐽
2221fveq2i 6890 . . 3 (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐽)
2322fveq1i 6888 . 2 ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) = ((limPt‘𝐽)‘(𝐴(,)𝐵))
2419, 23eleqtrdi 2843 1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cin 3932  wss 3933   cuni 4889   class class class wbr 5125  ran crn 5668  cfv 6542  (class class class)co 7414  cc 11136  cr 11137  *cxr 11277   < clt 11278  (,)cioo 13370  TopOpenctopn 17442  topGenctg 17458  fldccnfld 21331  Topctop 22866  limPtclp 23107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fi 9434  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-q 12974  df-rp 13018  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13374  df-fz 13531  df-seq 14026  df-exp 14086  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-plusg 17290  df-mulr 17291  df-starv 17292  df-tset 17296  df-ple 17297  df-ds 17299  df-unif 17300  df-rest 17443  df-topn 17444  df-topgen 17464  df-psmet 21323  df-xmet 21324  df-met 21325  df-bl 21326  df-mopn 21327  df-cnfld 21332  df-top 22867  df-topon 22884  df-topsp 22906  df-bases 22919  df-cld 22992  df-ntr 22993  df-cls 22994  df-nei 23071  df-lp 23109  df-xms 24294  df-ms 24295
This theorem is referenced by:  cncfiooiccre  45855  fourierdlem60  46126  fourierdlem74  46140  fourierdlem88  46154  fourierdlem94  46160  fourierdlem95  46161  fourierdlem103  46169  fourierdlem104  46170  fourierdlem113  46179
  Copyright terms: Public domain W3C validator