![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lptioo2cn | Structured version Visualization version GIF version |
Description: The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lptioo2cn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
lptioo2cn.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
lptioo2cn.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lptioo2cn.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
lptioo2cn | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . . 6 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
2 | lptioo2cn.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | lptioo2cn.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | lptioo2cn.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
5 | 1, 2, 3, 4 | lptioo2 45598 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) |
6 | eqid 2736 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
7 | 6 | cnfldtop 24826 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ Top |
8 | ax-resscn 11216 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
9 | unicntop 24828 | . . . . . . 7 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
10 | 8, 9 | sseqtri 4033 | . . . . . 6 ⊢ ℝ ⊆ ∪ (TopOpen‘ℂfld) |
11 | ioossre 13451 | . . . . . 6 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
12 | eqid 2736 | . . . . . . 7 ⊢ ∪ (TopOpen‘ℂfld) = ∪ (TopOpen‘ℂfld) | |
13 | tgioo4 24848 | . . . . . . 7 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
14 | 12, 13 | restlp 23213 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ ∪ (TopOpen‘ℂfld) ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
15 | 7, 10, 11, 14 | mp3an 1461 | . . . . 5 ⊢ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) |
16 | 5, 15 | eleqtrdi 2850 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
17 | elin 3980 | . . . 4 ⊢ (𝐵 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) ↔ (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐵 ∈ ℝ)) | |
18 | 16, 17 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐵 ∈ ℝ)) |
19 | 18 | simpld 494 | . 2 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵))) |
20 | lptioo2cn.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
21 | 20 | eqcomi 2745 | . . . 4 ⊢ (TopOpen‘ℂfld) = 𝐽 |
22 | 21 | fveq2i 6914 | . . 3 ⊢ (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐽) |
23 | 22 | fveq1i 6912 | . 2 ⊢ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) = ((limPt‘𝐽)‘(𝐴(,)𝐵)) |
24 | 19, 23 | eleqtrdi 2850 | 1 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∩ cin 3963 ⊆ wss 3964 ∪ cuni 4913 class class class wbr 5149 ran crn 5691 ‘cfv 6566 (class class class)co 7435 ℂcc 11157 ℝcr 11158 ℝ*cxr 11298 < clt 11299 (,)cioo 13390 TopOpenctopn 17474 topGenctg 17490 ℂfldccnfld 21388 Topctop 22921 limPtclp 23164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-er 8750 df-map 8873 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fi 9455 df-sup 9486 df-inf 9487 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-ioo 13394 df-fz 13551 df-seq 14046 df-exp 14106 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-struct 17187 df-slot 17222 df-ndx 17234 df-base 17252 df-plusg 17317 df-mulr 17318 df-starv 17319 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-rest 17475 df-topn 17476 df-topgen 17496 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-cnfld 21389 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-cld 23049 df-ntr 23050 df-cls 23051 df-nei 23128 df-lp 23166 df-xms 24352 df-ms 24353 |
This theorem is referenced by: cncfiooiccre 45862 fourierdlem60 46133 fourierdlem74 46147 fourierdlem88 46161 fourierdlem94 46167 fourierdlem95 46168 fourierdlem103 46176 fourierdlem104 46177 fourierdlem113 46186 |
Copyright terms: Public domain | W3C validator |