Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo2cn Structured version   Visualization version   GIF version

Theorem lptioo2cn 45612
Description: The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo2cn.1 𝐽 = (TopOpen‘ℂfld)
lptioo2cn.2 (𝜑𝐴 ∈ ℝ*)
lptioo2cn.3 (𝜑𝐵 ∈ ℝ)
lptioo2cn.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo2cn (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo2cn
StepHypRef Expression
1 eqid 2736 . . . . . 6 (topGen‘ran (,)) = (topGen‘ran (,))
2 lptioo2cn.2 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3 lptioo2cn.3 . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 lptioo2cn.4 . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 3, 4lptioo2 45598 . . . . 5 (𝜑𝐵 ∈ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
6 eqid 2736 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldtop 24826 . . . . . 6 (TopOpen‘ℂfld) ∈ Top
8 ax-resscn 11216 . . . . . . 7 ℝ ⊆ ℂ
9 unicntop 24828 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
108, 9sseqtri 4033 . . . . . 6 ℝ ⊆ (TopOpen‘ℂfld)
11 ioossre 13451 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
12 eqid 2736 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
13 tgioo4 24848 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1412, 13restlp 23213 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ (TopOpen‘ℂfld) ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
157, 10, 11, 14mp3an 1461 . . . . 5 ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)
165, 15eleqtrdi 2850 . . . 4 (𝜑𝐵 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
17 elin 3980 . . . 4 (𝐵 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) ↔ (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐵 ∈ ℝ))
1816, 17sylib 218 . . 3 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐵 ∈ ℝ))
1918simpld 494 . 2 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
20 lptioo2cn.1 . . . . 5 𝐽 = (TopOpen‘ℂfld)
2120eqcomi 2745 . . . 4 (TopOpen‘ℂfld) = 𝐽
2221fveq2i 6914 . . 3 (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐽)
2322fveq1i 6912 . 2 ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) = ((limPt‘𝐽)‘(𝐴(,)𝐵))
2419, 23eleqtrdi 2850 1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1538  wcel 2107  cin 3963  wss 3964   cuni 4913   class class class wbr 5149  ran crn 5691  cfv 6566  (class class class)co 7435  cc 11157  cr 11158  *cxr 11298   < clt 11299  (,)cioo 13390  TopOpenctopn 17474  topGenctg 17490  fldccnfld 21388  Topctop 22921  limPtclp 23164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-er 8750  df-map 8873  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-fi 9455  df-sup 9486  df-inf 9487  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-z 12618  df-dec 12738  df-uz 12883  df-q 12995  df-rp 13039  df-xneg 13158  df-xadd 13159  df-xmul 13160  df-ioo 13394  df-fz 13551  df-seq 14046  df-exp 14106  df-cj 15141  df-re 15142  df-im 15143  df-sqrt 15277  df-abs 15278  df-struct 17187  df-slot 17222  df-ndx 17234  df-base 17252  df-plusg 17317  df-mulr 17318  df-starv 17319  df-tset 17323  df-ple 17324  df-ds 17326  df-unif 17327  df-rest 17475  df-topn 17476  df-topgen 17496  df-psmet 21380  df-xmet 21381  df-met 21382  df-bl 21383  df-mopn 21384  df-cnfld 21389  df-top 22922  df-topon 22939  df-topsp 22961  df-bases 22975  df-cld 23049  df-ntr 23050  df-cls 23051  df-nei 23128  df-lp 23166  df-xms 24352  df-ms 24353
This theorem is referenced by:  cncfiooiccre  45862  fourierdlem60  46133  fourierdlem74  46147  fourierdlem88  46161  fourierdlem94  46167  fourierdlem95  46168  fourierdlem103  46176  fourierdlem104  46177  fourierdlem113  46186
  Copyright terms: Public domain W3C validator