![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lptioo2cn | Structured version Visualization version GIF version |
Description: The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lptioo2cn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
lptioo2cn.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
lptioo2cn.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lptioo2cn.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
lptioo2cn | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . . 6 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
2 | lptioo2cn.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | lptioo2cn.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | lptioo2cn.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
5 | 1, 2, 3, 4 | lptioo2 43879 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) |
6 | eqid 2737 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
7 | 6 | cnfldtop 24150 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ Top |
8 | ax-resscn 11109 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
9 | unicntop 24152 | . . . . . . 7 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
10 | 8, 9 | sseqtri 3981 | . . . . . 6 ⊢ ℝ ⊆ ∪ (TopOpen‘ℂfld) |
11 | ioossre 13326 | . . . . . 6 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
12 | eqid 2737 | . . . . . . 7 ⊢ ∪ (TopOpen‘ℂfld) = ∪ (TopOpen‘ℂfld) | |
13 | 6 | tgioo2 24169 | . . . . . . 7 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
14 | 12, 13 | restlp 22537 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ ∪ (TopOpen‘ℂfld) ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
15 | 7, 10, 11, 14 | mp3an 1462 | . . . . 5 ⊢ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) |
16 | 5, 15 | eleqtrdi 2848 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
17 | elin 3927 | . . . 4 ⊢ (𝐵 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) ↔ (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐵 ∈ ℝ)) | |
18 | 16, 17 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐵 ∈ ℝ)) |
19 | 18 | simpld 496 | . 2 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵))) |
20 | lptioo2cn.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
21 | 20 | eqcomi 2746 | . . . 4 ⊢ (TopOpen‘ℂfld) = 𝐽 |
22 | 21 | fveq2i 6846 | . . 3 ⊢ (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐽) |
23 | 22 | fveq1i 6844 | . 2 ⊢ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) = ((limPt‘𝐽)‘(𝐴(,)𝐵)) |
24 | 19, 23 | eleqtrdi 2848 | 1 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∩ cin 3910 ⊆ wss 3911 ∪ cuni 4866 class class class wbr 5106 ran crn 5635 ‘cfv 6497 (class class class)co 7358 ℂcc 11050 ℝcr 11051 ℝ*cxr 11189 < clt 11190 (,)cioo 13265 TopOpenctopn 17304 topGenctg 17320 ℂfldccnfld 20799 Topctop 22245 limPtclp 22488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 ax-pre-sup 11130 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8649 df-map 8768 df-en 8885 df-dom 8886 df-sdom 8887 df-fin 8888 df-fi 9348 df-sup 9379 df-inf 9380 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-nn 12155 df-2 12217 df-3 12218 df-4 12219 df-5 12220 df-6 12221 df-7 12222 df-8 12223 df-9 12224 df-n0 12415 df-z 12501 df-dec 12620 df-uz 12765 df-q 12875 df-rp 12917 df-xneg 13034 df-xadd 13035 df-xmul 13036 df-ioo 13269 df-fz 13426 df-seq 13908 df-exp 13969 df-cj 14985 df-re 14986 df-im 14987 df-sqrt 15121 df-abs 15122 df-struct 17020 df-slot 17055 df-ndx 17067 df-base 17085 df-plusg 17147 df-mulr 17148 df-starv 17149 df-tset 17153 df-ple 17154 df-ds 17156 df-unif 17157 df-rest 17305 df-topn 17306 df-topgen 17326 df-psmet 20791 df-xmet 20792 df-met 20793 df-bl 20794 df-mopn 20795 df-cnfld 20800 df-top 22246 df-topon 22263 df-topsp 22285 df-bases 22299 df-cld 22373 df-ntr 22374 df-cls 22375 df-nei 22452 df-lp 22490 df-xms 23676 df-ms 23677 |
This theorem is referenced by: cncfiooiccre 44143 fourierdlem60 44414 fourierdlem74 44428 fourierdlem88 44442 fourierdlem94 44448 fourierdlem95 44449 fourierdlem103 44457 fourierdlem104 44458 fourierdlem113 44467 |
Copyright terms: Public domain | W3C validator |