![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lptioo1cn | Structured version Visualization version GIF version |
Description: The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lptioo1cn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
lptioo1cn.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
lptioo1cn.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lptioo1cn.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
lptioo1cn | ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
2 | lptioo1cn.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | lptioo1cn.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | lptioo1cn.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
5 | 1, 2, 3, 4 | lptioo1 45588 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) |
6 | eqid 2735 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
7 | 6 | cnfldtop 24820 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ Top) |
9 | ax-resscn 11210 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
10 | unicntop 24822 | . . . . . . . 8 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
11 | 9, 10 | sseqtri 4032 | . . . . . . 7 ⊢ ℝ ⊆ ∪ (TopOpen‘ℂfld) |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ∪ (TopOpen‘ℂfld)) |
13 | ioossre 13445 | . . . . . . 7 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
15 | eqid 2735 | . . . . . . 7 ⊢ ∪ (TopOpen‘ℂfld) = ∪ (TopOpen‘ℂfld) | |
16 | 6 | tgioo2 24839 | . . . . . . 7 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
17 | 15, 16 | restlp 23207 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ ∪ (TopOpen‘ℂfld) ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
18 | 8, 12, 14, 17 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
19 | 5, 18 | eleqtrd 2841 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
20 | elin 3979 | . . . 4 ⊢ (𝐴 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) ↔ (𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐴 ∈ ℝ)) | |
21 | 19, 20 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐴 ∈ ℝ)) |
22 | 21 | simpld 494 | . 2 ⊢ (𝜑 → 𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵))) |
23 | lptioo1cn.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
24 | 23 | eqcomi 2744 | . . . 4 ⊢ (TopOpen‘ℂfld) = 𝐽 |
25 | 24 | fveq2i 6910 | . . 3 ⊢ (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐽) |
26 | 25 | fveq1i 6908 | . 2 ⊢ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) = ((limPt‘𝐽)‘(𝐴(,)𝐵)) |
27 | 22, 26 | eleqtrdi 2849 | 1 ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 ∪ cuni 4912 class class class wbr 5148 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 ℝ*cxr 11292 < clt 11293 (,)cioo 13384 TopOpenctopn 17468 topGenctg 17484 ℂfldccnfld 21382 Topctop 22915 limPtclp 23158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-rest 17469 df-topn 17470 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-xms 24346 df-ms 24347 |
This theorem is referenced by: cncfiooiccre 45851 fourierdlem61 46123 fourierdlem75 46137 fourierdlem85 46147 fourierdlem88 46150 fourierdlem94 46156 fourierdlem95 46157 fourierdlem103 46165 fourierdlem104 46166 fourierdlem113 46175 |
Copyright terms: Public domain | W3C validator |