| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lptioo1cn | Structured version Visualization version GIF version | ||
| Description: The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| lptioo1cn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| lptioo1cn.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| lptioo1cn.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| lptioo1cn.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| lptioo1cn | ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . . 6 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
| 2 | lptioo1cn.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | lptioo1cn.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 4 | lptioo1cn.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 5 | 1, 2, 3, 4 | lptioo1 45628 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) |
| 6 | eqid 2736 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 7 | 6 | cnfldtop 24727 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ Top) |
| 9 | ax-resscn 11191 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 10 | unicntop 24729 | . . . . . . . 8 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
| 11 | 9, 10 | sseqtri 4012 | . . . . . . 7 ⊢ ℝ ⊆ ∪ (TopOpen‘ℂfld) |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ∪ (TopOpen‘ℂfld)) |
| 13 | ioossre 13429 | . . . . . . 7 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 15 | eqid 2736 | . . . . . . 7 ⊢ ∪ (TopOpen‘ℂfld) = ∪ (TopOpen‘ℂfld) | |
| 16 | tgioo4 24749 | . . . . . . 7 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 17 | 15, 16 | restlp 23126 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ ∪ (TopOpen‘ℂfld) ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
| 18 | 8, 12, 14, 17 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
| 19 | 5, 18 | eleqtrd 2837 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
| 20 | elin 3947 | . . . 4 ⊢ (𝐴 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) ↔ (𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐴 ∈ ℝ)) | |
| 21 | 19, 20 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐴 ∈ ℝ)) |
| 22 | 21 | simpld 494 | . 2 ⊢ (𝜑 → 𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵))) |
| 23 | lptioo1cn.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 24 | 23 | eqcomi 2745 | . . . 4 ⊢ (TopOpen‘ℂfld) = 𝐽 |
| 25 | 24 | fveq2i 6884 | . . 3 ⊢ (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐽) |
| 26 | 25 | fveq1i 6882 | . 2 ⊢ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) = ((limPt‘𝐽)‘(𝐴(,)𝐵)) |
| 27 | 22, 26 | eleqtrdi 2845 | 1 ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ⊆ wss 3931 ∪ cuni 4888 class class class wbr 5124 ran crn 5660 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 ℝ*cxr 11273 < clt 11274 (,)cioo 13367 TopOpenctopn 17440 topGenctg 17456 ℂfldccnfld 21320 Topctop 22836 limPtclp 23077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-mulr 17290 df-starv 17291 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-rest 17441 df-topn 17442 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-xms 24264 df-ms 24265 |
| This theorem is referenced by: cncfiooiccre 45891 fourierdlem61 46163 fourierdlem75 46177 fourierdlem85 46187 fourierdlem88 46190 fourierdlem94 46196 fourierdlem95 46197 fourierdlem103 46205 fourierdlem104 46206 fourierdlem113 46215 |
| Copyright terms: Public domain | W3C validator |