Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lptioo1cn | Structured version Visualization version GIF version |
Description: The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lptioo1cn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
lptioo1cn.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
lptioo1cn.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lptioo1cn.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
lptioo1cn | ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . . 6 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
2 | lptioo1cn.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | lptioo1cn.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | lptioo1cn.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
5 | 1, 2, 3, 4 | lptioo1 43498 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵))) |
6 | eqid 2736 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
7 | 6 | cnfldtop 24045 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ Top) |
9 | ax-resscn 11021 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
10 | unicntop 24047 | . . . . . . . 8 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
11 | 9, 10 | sseqtri 3967 | . . . . . . 7 ⊢ ℝ ⊆ ∪ (TopOpen‘ℂfld) |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ∪ (TopOpen‘ℂfld)) |
13 | ioossre 13233 | . . . . . . 7 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
15 | eqid 2736 | . . . . . . 7 ⊢ ∪ (TopOpen‘ℂfld) = ∪ (TopOpen‘ℂfld) | |
16 | 6 | tgioo2 24064 | . . . . . . 7 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
17 | 15, 16 | restlp 22432 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ ∪ (TopOpen‘ℂfld) ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
18 | 8, 12, 14, 17 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
19 | 5, 18 | eleqtrd 2839 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ)) |
20 | elin 3913 | . . . 4 ⊢ (𝐴 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) ↔ (𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐴 ∈ ℝ)) | |
21 | 19, 20 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐴 ∈ ℝ)) |
22 | 21 | simpld 495 | . 2 ⊢ (𝜑 → 𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵))) |
23 | lptioo1cn.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
24 | 23 | eqcomi 2745 | . . . 4 ⊢ (TopOpen‘ℂfld) = 𝐽 |
25 | 24 | fveq2i 6822 | . . 3 ⊢ (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐽) |
26 | 25 | fveq1i 6820 | . 2 ⊢ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) = ((limPt‘𝐽)‘(𝐴(,)𝐵)) |
27 | 22, 26 | eleqtrdi 2847 | 1 ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∩ cin 3896 ⊆ wss 3897 ∪ cuni 4851 class class class wbr 5089 ran crn 5615 ‘cfv 6473 (class class class)co 7329 ℂcc 10962 ℝcr 10963 ℝ*cxr 11101 < clt 11102 (,)cioo 13172 TopOpenctopn 17221 topGenctg 17237 ℂfldccnfld 20695 Topctop 22140 limPtclp 22383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fi 9260 df-sup 9291 df-inf 9292 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-q 12782 df-rp 12824 df-xneg 12941 df-xadd 12942 df-xmul 12943 df-ioo 13176 df-fz 13333 df-seq 13815 df-exp 13876 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-struct 16937 df-slot 16972 df-ndx 16984 df-base 17002 df-plusg 17064 df-mulr 17065 df-starv 17066 df-tset 17070 df-ple 17071 df-ds 17073 df-unif 17074 df-rest 17222 df-topn 17223 df-topgen 17243 df-psmet 20687 df-xmet 20688 df-met 20689 df-bl 20690 df-mopn 20691 df-cnfld 20696 df-top 22141 df-topon 22158 df-topsp 22180 df-bases 22194 df-cld 22268 df-ntr 22269 df-cls 22270 df-nei 22347 df-lp 22385 df-xms 23571 df-ms 23572 |
This theorem is referenced by: cncfiooiccre 43761 fourierdlem61 44033 fourierdlem75 44047 fourierdlem85 44057 fourierdlem88 44060 fourierdlem94 44066 fourierdlem95 44067 fourierdlem103 44075 fourierdlem104 44076 fourierdlem113 44085 |
Copyright terms: Public domain | W3C validator |