Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo1cn Structured version   Visualization version   GIF version

Theorem lptioo1cn 43077
Description: The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo1cn.1 𝐽 = (TopOpen‘ℂfld)
lptioo1cn.2 (𝜑𝐵 ∈ ℝ*)
lptioo1cn.3 (𝜑𝐴 ∈ ℝ)
lptioo1cn.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo1cn (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo1cn
StepHypRef Expression
1 eqid 2738 . . . . . 6 (topGen‘ran (,)) = (topGen‘ran (,))
2 lptioo1cn.3 . . . . . 6 (𝜑𝐴 ∈ ℝ)
3 lptioo1cn.2 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
4 lptioo1cn.4 . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 3, 4lptioo1 43063 . . . . 5 (𝜑𝐴 ∈ ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
6 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldtop 23853 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
87a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
9 ax-resscn 10859 . . . . . . . 8 ℝ ⊆ ℂ
10 unicntop 23855 . . . . . . . 8 ℂ = (TopOpen‘ℂfld)
119, 10sseqtri 3953 . . . . . . 7 ℝ ⊆ (TopOpen‘ℂfld)
1211a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ (TopOpen‘ℂfld))
13 ioossre 13069 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
1413a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
15 eqid 2738 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
166tgioo2 23872 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1715, 16restlp 22242 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ (TopOpen‘ℂfld) ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
188, 12, 14, 17syl3anc 1369 . . . . 5 (𝜑 → ((limPt‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
195, 18eleqtrd 2841 . . . 4 (𝜑𝐴 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ))
20 elin 3899 . . . 4 (𝐴 ∈ (((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∩ ℝ) ↔ (𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐴 ∈ ℝ))
2119, 20sylib 217 . . 3 (𝜑 → (𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) ∧ 𝐴 ∈ ℝ))
2221simpld 494 . 2 (𝜑𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
23 lptioo1cn.1 . . . . 5 𝐽 = (TopOpen‘ℂfld)
2423eqcomi 2747 . . . 4 (TopOpen‘ℂfld) = 𝐽
2524fveq2i 6759 . . 3 (limPt‘(TopOpen‘ℂfld)) = (limPt‘𝐽)
2625fveq1i 6757 . 2 ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)) = ((limPt‘𝐽)‘(𝐴(,)𝐵))
2722, 26eleqtrdi 2849 1 (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883   cuni 4836   class class class wbr 5070  ran crn 5581  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  *cxr 10939   < clt 10940  (,)cioo 13008  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510  Topctop 21950  limPtclp 22193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-xms 23381  df-ms 23382
This theorem is referenced by:  cncfiooiccre  43326  fourierdlem61  43598  fourierdlem75  43612  fourierdlem85  43622  fourierdlem88  43625  fourierdlem94  43631  fourierdlem95  43632  fourierdlem103  43640  fourierdlem104  43641  fourierdlem113  43650
  Copyright terms: Public domain W3C validator