Step | Hyp | Ref
| Expression |
1 | | seqcaopr2.1 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
2 | | seqcaopr2.2 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
3 | | seqcaopr2.4 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | | seqcaopr2.5 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) |
5 | | seqcaopr2.6 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) |
6 | | seqcaopr2.7 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
7 | | elfzouz 13320 |
. . . . 5
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
8 | 7 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
9 | | elfzouz2 13330 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ≥‘𝑛)) |
10 | 9 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (ℤ≥‘𝑛)) |
11 | | fzss2 13225 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
12 | 10, 11 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
13 | 12 | sselda 3917 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥 ∈ (𝑀...𝑁)) |
14 | 5 | ralrimiva 3107 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐺‘𝑘) ∈ 𝑆) |
15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)(𝐺‘𝑘) ∈ 𝑆) |
16 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (𝐺‘𝑘) = (𝐺‘𝑥)) |
17 | 16 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → ((𝐺‘𝑘) ∈ 𝑆 ↔ (𝐺‘𝑥) ∈ 𝑆)) |
18 | 17 | rspccva 3551 |
. . . . . 6
⊢
((∀𝑘 ∈
(𝑀...𝑁)(𝐺‘𝑘) ∈ 𝑆 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) |
19 | 15, 18 | sylan 579 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) |
20 | 13, 19 | syldan 590 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺‘𝑥) ∈ 𝑆) |
21 | 1 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
22 | 8, 20, 21 | seqcl 13671 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆) |
23 | | fzofzp1 13412 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
24 | | fveq2 6756 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑛 + 1))) |
25 | 24 | eleq1d 2823 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → ((𝐺‘𝑘) ∈ 𝑆 ↔ (𝐺‘(𝑛 + 1)) ∈ 𝑆)) |
26 | 25 | rspccva 3551 |
. . . 4
⊢
((∀𝑘 ∈
(𝑀...𝑁)(𝐺‘𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆) |
27 | 14, 23, 26 | syl2an 595 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆) |
28 | 4 | ralrimiva 3107 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑆) |
29 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
30 | 29 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘𝑥) ∈ 𝑆)) |
31 | 30 | rspccva 3551 |
. . . . . . . 8
⊢
((∀𝑘 ∈
(𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑆 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
32 | 28, 31 | sylan 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
33 | 32 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
34 | 13, 33 | syldan 590 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐹‘𝑥) ∈ 𝑆) |
35 | 8, 34, 21 | seqcl 13671 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆) |
36 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
37 | 36 | eleq1d 2823 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) |
38 | 37 | rspccva 3551 |
. . . . 5
⊢
((∀𝑘 ∈
(𝑀...𝑁)(𝐹‘𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
39 | 28, 23, 38 | syl2an 595 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
40 | | seqcaopr2.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
41 | 40 | anassrs 467 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
42 | 41 | ralrimivva 3114 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
43 | 42 | ralrimivva 3114 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
44 | 43 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
45 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧)) |
46 | 45 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤))) |
47 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) |
48 | 47 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))) |
49 | 46, 48 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))) |
50 | 49 | 2ralbidv 3122 |
. . . . 5
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))) |
51 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝑦𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄𝑤)) |
52 | 51 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤))) |
53 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
54 | 53 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
55 | 52, 54 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))) |
56 | 55 | 2ralbidv 3122 |
. . . . 5
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))) |
57 | 50, 56 | rspc2va 3563 |
. . . 4
⊢
((((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
58 | 35, 39, 44, 57 | syl21anc 834 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
59 | | oveq2 7263 |
. . . . . 6
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))) |
60 | 59 | oveq1d 7270 |
. . . . 5
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤))) |
61 | | oveq1 7262 |
. . . . . 6
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (𝑧 + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) |
62 | 61 | oveq2d 7271 |
. . . . 5
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤))) |
63 | 60, 62 | eqeq12d 2754 |
. . . 4
⊢ (𝑧 = (seq𝑀( + , 𝐺)‘𝑛) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)))) |
64 | | oveq2 7263 |
. . . . . 6
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((𝐹‘(𝑛 + 1))𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) |
65 | 64 | oveq2d 7271 |
. . . . 5
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))) |
66 | | oveq2 7263 |
. . . . . 6
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((seq𝑀( + , 𝐺)‘𝑛) + 𝑤) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
67 | 66 | oveq2d 7271 |
. . . . 5
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
68 | 65, 67 | eqeq12d 2754 |
. . . 4
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + 𝑤)) ↔ (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))) |
69 | 63, 68 | rspc2va 3563 |
. . 3
⊢
((((seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆 ∧ (𝐺‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
70 | 22, 27, 58, 69 | syl21anc 834 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
71 | 1, 2, 3, 4, 5, 6, 70 | seqcaopr3 13686 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) |