MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpmhmlem1 Structured version   Visualization version   GIF version

Theorem pm2mpmhmlem1 22681
Description: Lemma 1 for pm2mpmhm 22683. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpfo.p 𝑃 = (Poly1𝑅)
pm2mpfo.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpfo.b 𝐵 = (Base‘𝐶)
pm2mpfo.m = ( ·𝑠𝑄)
pm2mpfo.e = (.g‘(mulGrp‘𝑄))
pm2mpfo.x 𝑋 = (var1𝐴)
pm2mpfo.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpfo.q 𝑄 = (Poly1𝐴)
pm2mpfo.l 𝐿 = (Base‘𝑄)
pm2mpfo.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpmhmlem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑙 ∈ ℕ0 ↦ ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) (𝑙 𝑋))) finSupp (0g𝑄))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘,𝑙   𝐶,𝑘,𝑙   𝑘,𝐿   𝑘,𝑁,𝑙   𝑄,𝑘   𝑅,𝑘   ,𝑘   𝐴,𝑙   𝑃,𝑘   𝑅,𝑙   𝑋,𝑙   ,𝑙   ,𝑙   𝑥,𝑦,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑙)   𝑄(𝑥,𝑦,𝑙)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦,𝑘,𝑙)   (𝑥,𝑦,𝑘)   (𝑥,𝑦)   𝐿(𝑥,𝑦,𝑙)   𝑁(𝑥,𝑦)   𝑋(𝑥,𝑦,𝑘)

Proof of Theorem pm2mpmhmlem1
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6855 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (0g𝑄) ∈ V)
2 ovexd 7404 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑙 ∈ ℕ0) → ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) (𝑙 𝑋)) ∈ V)
3 oveq2 7377 . . . . 5 (𝑙 = 𝑛 → (0...𝑙) = (0...𝑛))
4 oveq1 7376 . . . . . . 7 (𝑙 = 𝑛 → (𝑙𝑘) = (𝑛𝑘))
54oveq2d 7385 . . . . . 6 (𝑙 = 𝑛 → (𝑦 decompPMat (𝑙𝑘)) = (𝑦 decompPMat (𝑛𝑘)))
65oveq2d 7385 . . . . 5 (𝑙 = 𝑛 → ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))) = ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))
73, 6mpteq12dv 5189 . . . 4 (𝑙 = 𝑛 → (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘)))))
87oveq2d 7385 . . 3 (𝑙 = 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
9 oveq1 7376 . . 3 (𝑙 = 𝑛 → (𝑙 𝑋) = (𝑛 𝑋))
108, 9oveq12d 7387 . 2 (𝑙 = 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) (𝑙 𝑋)) = ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)))
11 simpll 766 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
12 simplr 768 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
13 pm2mpfo.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
14 pm2mpfo.c . . . . . . . . . 10 𝐶 = (𝑁 Mat 𝑃)
1513, 14pmatring 22555 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
1615anim1i 615 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐶 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
17 3anass 1094 . . . . . . . 8 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) ↔ (𝐶 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
1816, 17sylibr 234 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵))
19 pm2mpfo.b . . . . . . . 8 𝐵 = (Base‘𝐶)
20 eqid 2729 . . . . . . . 8 (.r𝐶) = (.r𝐶)
2119, 20ringcl 20135 . . . . . . 7 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
2218, 21syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
23 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
2413, 14, 19, 23pmatcoe1fsupp 22564 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐶)𝑦) ∈ 𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
2511, 12, 22, 24syl3anc 1373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
26 fvoveq1 7392 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑖 → (coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏)))
2726fveq1d 6842 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑖 → ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛))
2827eqeq1d 2731 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑖 → (((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) ↔ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
29 oveq2 7377 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑗 → (𝑖(𝑥(.r𝐶)𝑦)𝑏) = (𝑖(𝑥(.r𝐶)𝑦)𝑗))
3029fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑗 → (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗)))
3130fveq1d 6842 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑗 → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛))
3231eqeq1d 2731 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑗 → (((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) ↔ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
3328, 32rspc2va 3597 . . . . . . . . . . . . . . . 16 (((𝑖𝑁𝑗𝑁) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅))
3433expcom 413 . . . . . . . . . . . . . . 15 (∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
3534adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
36353impib 1116 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅))
3736mpoeq3dva 7446 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
38 pm2mpfo.a . . . . . . . . . . . . . 14 𝐴 = (𝑁 Mat 𝑅)
3938, 23mat0op 22282 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
4039ad3antrrr 730 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
4138matring 22306 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
42 pm2mpfo.q . . . . . . . . . . . . . . . 16 𝑄 = (Poly1𝐴)
4342ply1sca 22113 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
4441, 43syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
4544ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → 𝐴 = (Scalar‘𝑄))
4645fveq2d 6844 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (0g𝐴) = (0g‘(Scalar‘𝑄)))
4737, 40, 463eqtr2d 2770 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = (0g‘(Scalar‘𝑄)))
4847oveq1d 7384 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = ((0g‘(Scalar‘𝑄)) (𝑛 𝑋)))
4942ply1lmod 22112 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
5041, 49syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
5150adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ LMod)
5241adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐴 ∈ Ring)
53 pm2mpfo.x . . . . . . . . . . . . . 14 𝑋 = (var1𝐴)
54 eqid 2729 . . . . . . . . . . . . . 14 (mulGrp‘𝑄) = (mulGrp‘𝑄)
55 pm2mpfo.e . . . . . . . . . . . . . 14 = (.g‘(mulGrp‘𝑄))
56 pm2mpfo.l . . . . . . . . . . . . . 14 𝐿 = (Base‘𝑄)
5742, 53, 54, 55, 56ply1moncl 22133 . . . . . . . . . . . . 13 ((𝐴 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ 𝐿)
5852, 57sylan 580 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ 𝐿)
59 eqid 2729 . . . . . . . . . . . . 13 (Scalar‘𝑄) = (Scalar‘𝑄)
60 pm2mpfo.m . . . . . . . . . . . . 13 = ( ·𝑠𝑄)
61 eqid 2729 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
62 eqid 2729 . . . . . . . . . . . . 13 (0g𝑄) = (0g𝑄)
6356, 59, 60, 61, 62lmod0vs 20777 . . . . . . . . . . . 12 ((𝑄 ∈ LMod ∧ (𝑛 𝑋) ∈ 𝐿) → ((0g‘(Scalar‘𝑄)) (𝑛 𝑋)) = (0g𝑄))
6451, 58, 63syl2an2r 685 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((0g‘(Scalar‘𝑄)) (𝑛 𝑋)) = (0g𝑄))
6564adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((0g‘(Scalar‘𝑄)) (𝑛 𝑋)) = (0g𝑄))
6648, 65eqtrd 2764 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))
6766ex 412 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄)))
6867imim2d 57 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
6968ralimdva 3145 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
7069reximdv 3148 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
7125, 70mpd 15 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄)))
7214, 19decpmatval 22628 . . . . . . . . . 10 (((𝑥(.r𝐶)𝑦) ∈ 𝐵𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)))
7322, 72sylan 580 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)))
7473oveq1d 7384 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)))
7574eqeq1d 2731 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄) ↔ ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄)))
7675imbi2d 340 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄)) ↔ (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
7776ralbidva 3154 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄)) ↔ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
7877rexbidv 3157 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄)) ↔ ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
7971, 78mpbird 257 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄)))
8013, 14, 19, 38decpmatmul 22635 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
8180ad4ant234 1176 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
8281eqcomd 2735 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) = ((𝑥(.r𝐶)𝑦) decompPMat 𝑛))
8382oveq1d 7384 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)))
8483eqeq1d 2731 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (0g𝑄) ↔ (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄)))
8584imbi2d 340 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (0g𝑄)) ↔ (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄))))
8685ralbidva 3154 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (0g𝑄)) ↔ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄))))
8786rexbidv 3157 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (0g𝑄)) ↔ ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄))))
8879, 87mpbird 257 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (0g𝑄)))
891, 2, 10, 88mptnn0fsuppd 13939 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑙 ∈ ℕ0 ↦ ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) (𝑙 𝑋))) finSupp (0g𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cmpo 7371  Fincfn 8895   finSupp cfsupp 9288  0cc0 11044   < clt 11184  cmin 11381  0cn0 12418  ...cfz 13444  Basecbs 17155  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  .gcmg 18975  mulGrpcmgp 20025  Ringcrg 20118  LModclmod 20742  var1cv1 22036  Poly1cpl1 22037  coe1cco1 22038   Mat cmat 22270   decompPMat cdecpmat 22625   pMatToMatPoly cpm2mp 22655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-sra 21056  df-rgmod 21057  df-dsmm 21617  df-frlm 21632  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-mamu 22254  df-mat 22271  df-decpmat 22626
This theorem is referenced by:  pm2mpmhmlem2  22682
  Copyright terms: Public domain W3C validator