MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpmhmlem1 Structured version   Visualization version   GIF version

Theorem pm2mpmhmlem1 22733
Description: Lemma 1 for pm2mpmhm 22735. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpfo.p 𝑃 = (Poly1β€˜π‘…)
pm2mpfo.c 𝐢 = (𝑁 Mat 𝑃)
pm2mpfo.b 𝐡 = (Baseβ€˜πΆ)
pm2mpfo.m βˆ— = ( ·𝑠 β€˜π‘„)
pm2mpfo.e ↑ = (.gβ€˜(mulGrpβ€˜π‘„))
pm2mpfo.x 𝑋 = (var1β€˜π΄)
pm2mpfo.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpfo.q 𝑄 = (Poly1β€˜π΄)
pm2mpfo.l 𝐿 = (Baseβ€˜π‘„)
pm2mpfo.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpmhmlem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (𝑙 ∈ β„•0 ↦ ((𝐴 Ξ£g (π‘˜ ∈ (0...𝑙) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑙 βˆ’ π‘˜))))) βˆ— (𝑙 ↑ 𝑋))) finSupp (0gβ€˜π‘„))
Distinct variable groups:   𝐴,π‘˜   𝐡,π‘˜,𝑙   𝐢,π‘˜,𝑙   π‘˜,𝐿   π‘˜,𝑁,𝑙   𝑄,π‘˜   𝑅,π‘˜   βˆ— ,π‘˜   𝐴,𝑙   𝑃,π‘˜   𝑅,𝑙   𝑋,𝑙   βˆ— ,𝑙   ↑ ,𝑙   π‘₯,𝑦,π‘˜,𝑙
Allowed substitution hints:   𝐴(π‘₯,𝑦)   𝐡(π‘₯,𝑦)   𝐢(π‘₯,𝑦)   𝑃(π‘₯,𝑦,𝑙)   𝑄(π‘₯,𝑦,𝑙)   𝑅(π‘₯,𝑦)   𝑇(π‘₯,𝑦,π‘˜,𝑙)   ↑ (π‘₯,𝑦,π‘˜)   βˆ— (π‘₯,𝑦)   𝐿(π‘₯,𝑦,𝑙)   𝑁(π‘₯,𝑦)   𝑋(π‘₯,𝑦,π‘˜)

Proof of Theorem pm2mpmhmlem1
Dummy variables π‘Ž 𝑏 𝑖 𝑗 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6905 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (0gβ€˜π‘„) ∈ V)
2 ovexd 7448 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑙 ∈ β„•0) β†’ ((𝐴 Ξ£g (π‘˜ ∈ (0...𝑙) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑙 βˆ’ π‘˜))))) βˆ— (𝑙 ↑ 𝑋)) ∈ V)
3 oveq2 7421 . . . . 5 (𝑙 = 𝑛 β†’ (0...𝑙) = (0...𝑛))
4 oveq1 7420 . . . . . . 7 (𝑙 = 𝑛 β†’ (𝑙 βˆ’ π‘˜) = (𝑛 βˆ’ π‘˜))
54oveq2d 7429 . . . . . 6 (𝑙 = 𝑛 β†’ (𝑦 decompPMat (𝑙 βˆ’ π‘˜)) = (𝑦 decompPMat (𝑛 βˆ’ π‘˜)))
65oveq2d 7429 . . . . 5 (𝑙 = 𝑛 β†’ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑙 βˆ’ π‘˜))) = ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))
73, 6mpteq12dv 5235 . . . 4 (𝑙 = 𝑛 β†’ (π‘˜ ∈ (0...𝑙) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑙 βˆ’ π‘˜)))) = (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜)))))
87oveq2d 7429 . . 3 (𝑙 = 𝑛 β†’ (𝐴 Ξ£g (π‘˜ ∈ (0...𝑙) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑙 βˆ’ π‘˜))))) = (𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))))
9 oveq1 7420 . . 3 (𝑙 = 𝑛 β†’ (𝑙 ↑ 𝑋) = (𝑛 ↑ 𝑋))
108, 9oveq12d 7431 . 2 (𝑙 = 𝑛 β†’ ((𝐴 Ξ£g (π‘˜ ∈ (0...𝑙) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑙 βˆ’ π‘˜))))) βˆ— (𝑙 ↑ 𝑋)) = ((𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))) βˆ— (𝑛 ↑ 𝑋)))
11 simpll 765 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ 𝑁 ∈ Fin)
12 simplr 767 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ 𝑅 ∈ Ring)
13 pm2mpfo.p . . . . . . . . . 10 𝑃 = (Poly1β€˜π‘…)
14 pm2mpfo.c . . . . . . . . . 10 𝐢 = (𝑁 Mat 𝑃)
1513, 14pmatring 22607 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝐢 ∈ Ring)
1615anim1i 613 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (𝐢 ∈ Ring ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)))
17 3anass 1092 . . . . . . . 8 ((𝐢 ∈ Ring ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ↔ (𝐢 ∈ Ring ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)))
1816, 17sylibr 233 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (𝐢 ∈ Ring ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡))
19 pm2mpfo.b . . . . . . . 8 𝐡 = (Baseβ€˜πΆ)
20 eqid 2725 . . . . . . . 8 (.rβ€˜πΆ) = (.rβ€˜πΆ)
2119, 20ringcl 20189 . . . . . . 7 ((𝐢 ∈ Ring ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯(.rβ€˜πΆ)𝑦) ∈ 𝐡)
2218, 21syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΆ)𝑦) ∈ 𝐡)
23 eqid 2725 . . . . . . 7 (0gβ€˜π‘…) = (0gβ€˜π‘…)
2413, 14, 19, 23pmatcoe1fsupp 22616 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (π‘₯(.rβ€˜πΆ)𝑦) ∈ 𝐡) β†’ βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)))
2511, 12, 22, 24syl3anc 1368 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)))
26 fvoveq1 7436 . . . . . . . . . . . . . . . . . . 19 (π‘Ž = 𝑖 β†’ (coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏)) = (coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑏)))
2726fveq1d 6892 . . . . . . . . . . . . . . . . . 18 (π‘Ž = 𝑖 β†’ ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›))
2827eqeq1d 2727 . . . . . . . . . . . . . . . . 17 (π‘Ž = 𝑖 β†’ (((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…) ↔ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)))
29 oveq2 7421 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑗 β†’ (𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑏) = (𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))
3029fveq2d 6894 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑗 β†’ (coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑏)) = (coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗)))
3130fveq1d 6892 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑗 β†’ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›))
3231eqeq1d 2727 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑗 β†’ (((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…) ↔ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›) = (0gβ€˜π‘…)))
3328, 32rspc2va 3615 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›) = (0gβ€˜π‘…))
3433expcom 412 . . . . . . . . . . . . . . 15 (βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…) β†’ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›) = (0gβ€˜π‘…)))
3534adantl 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›) = (0gβ€˜π‘…)))
36353impib 1113 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›) = (0gβ€˜π‘…))
3736mpoeq3dva 7491 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
38 pm2mpfo.a . . . . . . . . . . . . . 14 𝐴 = (𝑁 Mat 𝑅)
3938, 23mat0op 22334 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (0gβ€˜π΄) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
4039ad3antrrr 728 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ (0gβ€˜π΄) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0gβ€˜π‘…)))
4138matring 22358 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝐴 ∈ Ring)
42 pm2mpfo.q . . . . . . . . . . . . . . . 16 𝑄 = (Poly1β€˜π΄)
4342ply1sca 22175 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ring β†’ 𝐴 = (Scalarβ€˜π‘„))
4441, 43syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝐴 = (Scalarβ€˜π‘„))
4544ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ 𝐴 = (Scalarβ€˜π‘„))
4645fveq2d 6894 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ (0gβ€˜π΄) = (0gβ€˜(Scalarβ€˜π‘„)))
4737, 40, 463eqtr2d 2771 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) = (0gβ€˜(Scalarβ€˜π‘„)))
4847oveq1d 7428 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = ((0gβ€˜(Scalarβ€˜π‘„)) βˆ— (𝑛 ↑ 𝑋)))
4942ply1lmod 22174 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring β†’ 𝑄 ∈ LMod)
5041, 49syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝑄 ∈ LMod)
5150adantr 479 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ 𝑄 ∈ LMod)
5241adantr 479 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ 𝐴 ∈ Ring)
53 pm2mpfo.x . . . . . . . . . . . . . 14 𝑋 = (var1β€˜π΄)
54 eqid 2725 . . . . . . . . . . . . . 14 (mulGrpβ€˜π‘„) = (mulGrpβ€˜π‘„)
55 pm2mpfo.e . . . . . . . . . . . . . 14 ↑ = (.gβ€˜(mulGrpβ€˜π‘„))
56 pm2mpfo.l . . . . . . . . . . . . . 14 𝐿 = (Baseβ€˜π‘„)
5742, 53, 54, 55, 56ply1moncl 22194 . . . . . . . . . . . . 13 ((𝐴 ∈ Ring ∧ 𝑛 ∈ β„•0) β†’ (𝑛 ↑ 𝑋) ∈ 𝐿)
5852, 57sylan 578 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ (𝑛 ↑ 𝑋) ∈ 𝐿)
59 eqid 2725 . . . . . . . . . . . . 13 (Scalarβ€˜π‘„) = (Scalarβ€˜π‘„)
60 pm2mpfo.m . . . . . . . . . . . . 13 βˆ— = ( ·𝑠 β€˜π‘„)
61 eqid 2725 . . . . . . . . . . . . 13 (0gβ€˜(Scalarβ€˜π‘„)) = (0gβ€˜(Scalarβ€˜π‘„))
62 eqid 2725 . . . . . . . . . . . . 13 (0gβ€˜π‘„) = (0gβ€˜π‘„)
6356, 59, 60, 61, 62lmod0vs 20777 . . . . . . . . . . . 12 ((𝑄 ∈ LMod ∧ (𝑛 ↑ 𝑋) ∈ 𝐿) β†’ ((0gβ€˜(Scalarβ€˜π‘„)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))
6451, 58, 63syl2an2r 683 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ ((0gβ€˜(Scalarβ€˜π‘„)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))
6564adantr 479 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ ((0gβ€˜(Scalarβ€˜π‘„)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))
6648, 65eqtrd 2765 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) ∧ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))
6766ex 411 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ (βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…) β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)))
6867imim2d 57 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ ((𝑠 < 𝑛 β†’ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ (𝑠 < 𝑛 β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))))
6968ralimdva 3157 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))))
7069reximdv 3160 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ βˆ€π‘Ž ∈ 𝑁 βˆ€π‘ ∈ 𝑁 ((coe1β€˜(π‘Ž(π‘₯(.rβ€˜πΆ)𝑦)𝑏))β€˜π‘›) = (0gβ€˜π‘…)) β†’ βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))))
7125, 70mpd 15 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)))
7214, 19decpmatval 22680 . . . . . . . . . 10 (((π‘₯(.rβ€˜πΆ)𝑦) ∈ 𝐡 ∧ 𝑛 ∈ β„•0) β†’ ((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)))
7322, 72sylan 578 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ ((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)))
7473oveq1d 7428 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ (((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)))
7574eqeq1d 2727 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ ((((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„) ↔ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)))
7675imbi2d 339 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ ((𝑠 < 𝑛 β†’ (((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)) ↔ (𝑠 < 𝑛 β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))))
7776ralbidva 3166 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ (((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)) ↔ βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))))
7877rexbidv 3169 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ (((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)) ↔ βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1β€˜(𝑖(π‘₯(.rβ€˜πΆ)𝑦)𝑗))β€˜π‘›)) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))))
7971, 78mpbird 256 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ (((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)))
8013, 14, 19, 38decpmatmul 22687 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ∧ 𝑛 ∈ β„•0) β†’ ((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) = (𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))))
8180ad4ant234 1172 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ ((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) = (𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))))
8281eqcomd 2731 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ (𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))) = ((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛))
8382oveq1d 7428 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ ((𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))) βˆ— (𝑛 ↑ 𝑋)) = (((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)))
8483eqeq1d 2727 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ (((𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„) ↔ (((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)))
8584imbi2d 339 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) ∧ 𝑛 ∈ β„•0) β†’ ((𝑠 < 𝑛 β†’ ((𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)) ↔ (𝑠 < 𝑛 β†’ (((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))))
8685ralbidva 3166 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ ((𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)) ↔ βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ (((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))))
8786rexbidv 3169 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ ((𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)) ↔ βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ (((π‘₯(.rβ€˜πΆ)𝑦) decompPMat 𝑛) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„))))
8879, 87mpbird 256 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ βˆƒπ‘  ∈ β„•0 βˆ€π‘› ∈ β„•0 (𝑠 < 𝑛 β†’ ((𝐴 Ξ£g (π‘˜ ∈ (0...𝑛) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑛 βˆ’ π‘˜))))) βˆ— (𝑛 ↑ 𝑋)) = (0gβ€˜π‘„)))
891, 2, 10, 88mptnn0fsuppd 13990 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (𝑙 ∈ β„•0 ↦ ((𝐴 Ξ£g (π‘˜ ∈ (0...𝑙) ↦ ((π‘₯ decompPMat π‘˜)(.rβ€˜π΄)(𝑦 decompPMat (𝑙 βˆ’ π‘˜))))) βˆ— (𝑙 ↑ 𝑋))) finSupp (0gβ€˜π‘„))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  βˆƒwrex 3060  Vcvv 3463   class class class wbr 5144   ↦ cmpt 5227  β€˜cfv 6543  (class class class)co 7413   ∈ cmpo 7415  Fincfn 8957   finSupp cfsupp 9380  0cc0 11133   < clt 11273   βˆ’ cmin 11469  β„•0cn0 12497  ...cfz 13511  Basecbs 17174  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17415   Ξ£g cgsu 17416  .gcmg 19022  mulGrpcmgp 20073  Ringcrg 20172  LModclmod 20742  var1cv1 22098  Poly1cpl1 22099  coe1cco1 22100   Mat cmat 22320   decompPMat cdecpmat 22677   pMatToMatPoly cpm2mp 22707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7866  df-1st 7987  df-2nd 7988  df-supp 8159  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9381  df-sup 9460  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-fz 13512  df-fzo 13655  df-seq 13994  df-hash 14317  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17417  df-gsum 17418  df-prds 17423  df-pws 17425  df-mre 17560  df-mrc 17561  df-acs 17563  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-mhm 18734  df-submnd 18735  df-grp 18892  df-minusg 18893  df-sbg 18894  df-mulg 19023  df-subg 19077  df-ghm 19167  df-cntz 19267  df-cmn 19736  df-abl 19737  df-mgp 20074  df-rng 20092  df-ur 20121  df-ring 20174  df-subrng 20482  df-subrg 20507  df-lmod 20744  df-lss 20815  df-sra 21057  df-rgmod 21058  df-dsmm 21665  df-frlm 21680  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-mamu 22304  df-mat 22321  df-decpmat 22678
This theorem is referenced by:  pm2mpmhmlem2  22734
  Copyright terms: Public domain W3C validator