Step | Hyp | Ref
| Expression |
1 | | fvexd 6789 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (0g‘𝑄) ∈ V) |
2 | | ovexd 7310 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑙 ∈ ℕ0) → ((𝐴 Σg
(𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) ∗ (𝑙 ↑ 𝑋)) ∈ V) |
3 | | oveq2 7283 |
. . . . 5
⊢ (𝑙 = 𝑛 → (0...𝑙) = (0...𝑛)) |
4 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑙 = 𝑛 → (𝑙 − 𝑘) = (𝑛 − 𝑘)) |
5 | 4 | oveq2d 7291 |
. . . . . 6
⊢ (𝑙 = 𝑛 → (𝑦 decompPMat (𝑙 − 𝑘)) = (𝑦 decompPMat (𝑛 − 𝑘))) |
6 | 5 | oveq2d 7291 |
. . . . 5
⊢ (𝑙 = 𝑛 → ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))) = ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))) |
7 | 3, 6 | mpteq12dv 5165 |
. . . 4
⊢ (𝑙 = 𝑛 → (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) |
8 | 7 | oveq2d 7291 |
. . 3
⊢ (𝑙 = 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
9 | | oveq1 7282 |
. . 3
⊢ (𝑙 = 𝑛 → (𝑙 ↑ 𝑋) = (𝑛 ↑ 𝑋)) |
10 | 8, 9 | oveq12d 7293 |
. 2
⊢ (𝑙 = 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) ∗ (𝑙 ↑ 𝑋)) = ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋))) |
11 | | simpll 764 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑁 ∈ Fin) |
12 | | simplr 766 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ Ring) |
13 | | pm2mpfo.p |
. . . . . . . . . 10
⊢ 𝑃 = (Poly1‘𝑅) |
14 | | pm2mpfo.c |
. . . . . . . . . 10
⊢ 𝐶 = (𝑁 Mat 𝑃) |
15 | 13, 14 | pmatring 21841 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
16 | 15 | anim1i 615 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐶 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
17 | | 3anass 1094 |
. . . . . . . 8
⊢ ((𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (𝐶 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
18 | 16, 17 | sylibr 233 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
19 | | pm2mpfo.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐶) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝐶) = (.r‘𝐶) |
21 | 19, 20 | ringcl 19800 |
. . . . . . 7
⊢ ((𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) |
22 | 18, 21 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) |
23 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
24 | 13, 14, 19, 23 | pmatcoe1fsupp 21850 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
25 | 11, 12, 22, 24 | syl3anc 1370 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
26 | | fvoveq1 7298 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑖 → (coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))) |
27 | 26 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑖 → ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛)) |
28 | 27 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑖 → (((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) ↔ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
29 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑗 → (𝑖(𝑥(.r‘𝐶)𝑦)𝑏) = (𝑖(𝑥(.r‘𝐶)𝑦)𝑗)) |
30 | 29 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑗 → (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))) |
31 | 30 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑗 → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) |
32 | 31 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑗 → (((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) ↔ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
33 | 28, 32 | rspc2va 3571 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅)) |
34 | 33 | expcom 414 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑎 ∈
𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
35 | 34 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
36 | 35 | 3impib 1115 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅)) |
37 | 36 | mpoeq3dva 7352 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
38 | | pm2mpfo.a |
. . . . . . . . . . . . . 14
⊢ 𝐴 = (𝑁 Mat 𝑅) |
39 | 38, 23 | mat0op 21568 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝐴) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
40 | 39 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (0g‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
41 | 38 | matring 21592 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
42 | | pm2mpfo.q |
. . . . . . . . . . . . . . . 16
⊢ 𝑄 = (Poly1‘𝐴) |
43 | 42 | ply1sca 21424 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄)) |
44 | 41, 43 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄)) |
45 | 44 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → 𝐴 = (Scalar‘𝑄)) |
46 | 45 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (0g‘𝐴) =
(0g‘(Scalar‘𝑄))) |
47 | 37, 40, 46 | 3eqtr2d 2784 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = (0g‘(Scalar‘𝑄))) |
48 | 47 | oveq1d 7290 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) =
((0g‘(Scalar‘𝑄)) ∗ (𝑛 ↑ 𝑋))) |
49 | 42 | ply1lmod 21423 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Ring → 𝑄 ∈ LMod) |
50 | 41, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod) |
51 | 50 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑄 ∈ LMod) |
52 | 41 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐴 ∈ Ring) |
53 | | pm2mpfo.x |
. . . . . . . . . . . . . 14
⊢ 𝑋 = (var1‘𝐴) |
54 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(mulGrp‘𝑄) =
(mulGrp‘𝑄) |
55 | | pm2mpfo.e |
. . . . . . . . . . . . . 14
⊢ ↑ =
(.g‘(mulGrp‘𝑄)) |
56 | | pm2mpfo.l |
. . . . . . . . . . . . . 14
⊢ 𝐿 = (Base‘𝑄) |
57 | 42, 53, 54, 55, 56 | ply1moncl 21442 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Ring ∧ 𝑛 ∈ ℕ0)
→ (𝑛 ↑ 𝑋) ∈ 𝐿) |
58 | 52, 57 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑛 ↑ 𝑋) ∈ 𝐿) |
59 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Scalar‘𝑄) =
(Scalar‘𝑄) |
60 | | pm2mpfo.m |
. . . . . . . . . . . . 13
⊢ ∗ = (
·𝑠 ‘𝑄) |
61 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(0g‘(Scalar‘𝑄)) =
(0g‘(Scalar‘𝑄)) |
62 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑄) = (0g‘𝑄) |
63 | 56, 59, 60, 61, 62 | lmod0vs 20156 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∈ LMod ∧ (𝑛 ↑ 𝑋) ∈ 𝐿) →
((0g‘(Scalar‘𝑄)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) |
64 | 51, 58, 63 | syl2an2r 682 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) →
((0g‘(Scalar‘𝑄)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) |
65 | 64 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) →
((0g‘(Scalar‘𝑄)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) |
66 | 48, 65 | eqtrd 2778 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) |
67 | 66 | ex 413 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
68 | 67 | imim2d 57 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
69 | 68 | ralimdva 3108 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
70 | 69 | reximdv 3202 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
71 | 25, 70 | mpd 15 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
72 | 14, 19 | decpmatval 21914 |
. . . . . . . . . 10
⊢ (((𝑥(.r‘𝐶)𝑦) ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛))) |
73 | 22, 72 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛))) |
74 | 73 | oveq1d 7290 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋))) |
75 | 74 | eqeq1d 2740 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄) ↔ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
76 | 75 | imbi2d 341 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ (𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
77 | 76 | ralbidva 3111 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
78 | 77 | rexbidv 3226 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
79 | 71, 78 | mpbird 256 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
80 | 13, 14, 19, 38 | decpmatmul 21921 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
81 | 80 | ad4ant234 1174 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
82 | 81 | eqcomd 2744 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) = ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛)) |
83 | 82 | oveq1d 7290 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋))) |
84 | 83 | eqeq1d 2740 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄) ↔ (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
85 | 84 | imbi2d 341 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ (𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
86 | 85 | ralbidva 3111 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
87 | 86 | rexbidv 3226 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
88 | 79, 87 | mpbird 256 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
89 | 1, 2, 10, 88 | mptnn0fsuppd 13718 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑙 ∈ ℕ0 ↦ ((𝐴 Σg
(𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) ∗ (𝑙 ↑ 𝑋))) finSupp (0g‘𝑄)) |