Step | Hyp | Ref
| Expression |
1 | | decpmatmulsumfsupp.0 |
. . . 4
⊢ 0 =
(0g‘𝐴) |
2 | 1 | fvexi 6770 |
. . 3
⊢ 0 ∈
V |
3 | 2 | a1i 11 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 0 ∈ V) |
4 | | ovexd 7290 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑙 ∈ ℕ0) → (𝐴 Σg
(𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙 − 𝑘))))) ∈ V) |
5 | | oveq2 7263 |
. . . 4
⊢ (𝑙 = 𝑛 → (0...𝑙) = (0...𝑛)) |
6 | | oveq1 7262 |
. . . . . 6
⊢ (𝑙 = 𝑛 → (𝑙 − 𝑘) = (𝑛 − 𝑘)) |
7 | 6 | oveq2d 7271 |
. . . . 5
⊢ (𝑙 = 𝑛 → (𝑦 decompPMat (𝑙 − 𝑘)) = (𝑦 decompPMat (𝑛 − 𝑘))) |
8 | 7 | oveq2d 7271 |
. . . 4
⊢ (𝑙 = 𝑛 → ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙 − 𝑘))) = ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘)))) |
9 | 5, 8 | mpteq12dv 5161 |
. . 3
⊢ (𝑙 = 𝑛 → (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) |
10 | 9 | oveq2d 7271 |
. 2
⊢ (𝑙 = 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙 − 𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘)))))) |
11 | | simpll 763 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑁 ∈ Fin) |
12 | | simplr 765 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ Ring) |
13 | | decpmatmul.p |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝑅) |
14 | | decpmatmul.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑁 Mat 𝑃) |
15 | 13, 14 | pmatring 21749 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
16 | 15 | anim1i 614 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐶 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
17 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (𝐶 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
18 | 16, 17 | sylibr 233 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
19 | | decpmatmul.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐶) |
20 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝐶) = (.r‘𝐶) |
21 | 19, 20 | ringcl 19715 |
. . . . . 6
⊢ ((𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) |
22 | 18, 21 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) |
23 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
24 | 13, 14, 19, 23 | pmatcoe1fsupp 21758 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
25 | 11, 12, 22, 24 | syl3anc 1369 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
26 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑖 → (coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))) |
27 | 26 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑖 → ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛)) |
28 | 27 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑖 → (((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) ↔ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
29 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑗 → (𝑖(𝑥(.r‘𝐶)𝑦)𝑏) = (𝑖(𝑥(.r‘𝐶)𝑦)𝑗)) |
30 | 29 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑗 → (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))) |
31 | 30 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑗 → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) |
32 | 31 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑗 → (((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) ↔ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
33 | 28, 32 | rspc2va 3563 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅)) |
34 | 33 | expcom 413 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
35 | 34 | adantl 481 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
36 | 35 | 3impib 1114 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅)) |
37 | 36 | mpoeq3dva 7330 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
38 | | decpmatmul.a |
. . . . . . . . . . . 12
⊢ 𝐴 = (𝑁 Mat 𝑅) |
39 | 38, 23 | mat0op 21476 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝐴) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
40 | 1, 39 | eqtrid 2790 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
41 | 40 | ad3antrrr 726 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → 0 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
42 | 37, 41 | eqtr4d 2781 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ) |
43 | 42 | ex 412 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 )) |
44 | 43 | imim2d 57 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
45 | 44 | ralimdva 3102 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
46 | 45 | reximdv 3201 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
47 | 25, 46 | mpd 15 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 )) |
48 | | decpmatmulsumfsupp.m |
. . . . . . . . . . . 12
⊢ · =
(.r‘𝐴) |
49 | 48 | oveqi 7268 |
. . . . . . . . . . 11
⊢ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))) = ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))) |
50 | 49 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))) = ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))) |
51 | 50 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) |
52 | 51 | oveq2d 7271 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
53 | 13, 14, 19, 38 | decpmatmul 21829 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
54 | 53 | ad4ant234 1173 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
55 | 14, 19 | decpmatval 21822 |
. . . . . . . . 9
⊢ (((𝑥(.r‘𝐶)𝑦) ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛))) |
56 | 22, 55 | sylan 579 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛))) |
57 | 52, 54, 56 | 3eqtr2d 2784 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛))) |
58 | 57 | eqeq1d 2740 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = 0 ↔ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 )) |
59 | 58 | imbi2d 340 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = 0 ) ↔ (𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
60 | 59 | ralbidva 3119 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = 0 ) ↔ ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
61 | 60 | rexbidv 3225 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = 0 ) ↔ ∃𝑠 ∈ ℕ0
∀𝑛 ∈
ℕ0 (𝑠 <
𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
62 | 47, 61 | mpbird 256 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = 0 )) |
63 | 3, 4, 10, 62 | mptnn0fsuppd 13646 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑙 ∈ ℕ0 ↦ (𝐴 Σg
(𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙 − 𝑘)))))) finSupp 0 ) |