| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cjcld | Structured version Visualization version GIF version | ||
| Description: Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| cjcld | ⊢ (𝜑 → (∗‘𝐴) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | cjcl 15012 | . 2 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (∗‘𝐴) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6482 ℂcc 11007 ∗ccj 15003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-cj 15006 |
| This theorem is referenced by: absrpcl 15195 absmul 15201 abstri 15238 abs1m 15243 abslem2 15247 sqreulem 15267 gzcjcl 16848 mul4sqlem 16865 gzrngunit 21340 cphipipcj 25098 cphassr 25110 cph2ass 25111 tcphcphlem2 25134 pjthlem1 25335 itgabs 25734 dvcj 25852 dvmptre 25871 dvmptim 25872 tanregt0 26446 logcj 26513 cosargd 26515 root1cj 26664 lawcoslem1 26723 isosctrlem2 26727 asinlem3 26779 atandmcj 26817 atancj 26818 sum2dchr 27183 rpvmasum2 27421 dchrisum0re 27422 pjhthlem1 31335 riesz3i 32006 constrrtll 33698 constrrtlc1 33699 constrrtcclem 33701 constrrtcc 33702 constrconj 33712 constrfin 33713 constrelextdg2 33714 constrrecl 33736 constrreinvcl 33739 constrinvcl 33740 itgabsnc 37673 ftc1cnnclem 37675 ftc2nc 37686 sigarim 46836 sigarac 46837 sigaraf 46838 sigarmf 46839 sigarls 46842 sigardiv 46846 sharhght 46850 |
| Copyright terms: Public domain | W3C validator |