| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cjcld | Structured version Visualization version GIF version | ||
| Description: Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| cjcld | ⊢ (𝜑 → (∗‘𝐴) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | cjcl 15078 | . 2 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (∗‘𝐴) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6514 ℂcc 11073 ∗ccj 15069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-cj 15072 |
| This theorem is referenced by: absrpcl 15261 absmul 15267 abstri 15304 abs1m 15309 abslem2 15313 sqreulem 15333 gzcjcl 16914 mul4sqlem 16931 gzrngunit 21357 cphipipcj 25107 cphassr 25119 cph2ass 25120 tcphcphlem2 25143 pjthlem1 25344 itgabs 25743 dvcj 25861 dvmptre 25880 dvmptim 25881 tanregt0 26455 logcj 26522 cosargd 26524 root1cj 26673 lawcoslem1 26732 isosctrlem2 26736 asinlem3 26788 atandmcj 26826 atancj 26827 sum2dchr 27192 rpvmasum2 27430 dchrisum0re 27431 pjhthlem1 31327 riesz3i 31998 constrrtll 33728 constrrtlc1 33729 constrrtcclem 33731 constrrtcc 33732 constrconj 33742 constrfin 33743 constrelextdg2 33744 constrrecl 33766 constrreinvcl 33769 constrinvcl 33770 itgabsnc 37690 ftc1cnnclem 37692 ftc2nc 37703 sigarim 46856 sigarac 46857 sigaraf 46858 sigarmf 46859 sigarls 46862 sigardiv 46866 sharhght 46870 |
| Copyright terms: Public domain | W3C validator |