MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjcld Structured version   Visualization version   GIF version

Theorem cjcld 14393
Description: Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
recld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
cjcld (𝜑 → (∗‘𝐴) ∈ ℂ)

Proof of Theorem cjcld
StepHypRef Expression
1 recld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cjcl 14302 . 2 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
31, 2syl 17 1 (𝜑 → (∗‘𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2083  cfv 6232  cc 10388  ccj 14293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-cj 14296
This theorem is referenced by:  absrpcl  14486  absmul  14492  abstri  14528  abs1m  14533  abslem2  14537  sqreulem  14557  gzcjcl  16105  mul4sqlem  16122  gzrngunit  20297  cphipipcj  23491  cphassr  23503  cph2ass  23504  tcphcphlem2  23526  pjthlem1  23727  itgabs  24122  dvcj  24234  dvmptre  24253  dvmptim  24254  tanregt0  24808  logcj  24874  cosargd  24876  root1cj  25022  lawcoslem1  25078  isosctrlem2  25082  asinlem3  25134  atandmcj  25172  atancj  25173  sum2dchr  25536  rpvmasum2  25774  dchrisum0re  25775  pjhthlem1  28855  riesz3i  29526  itgabsnc  34513  ftc1cnnclem  34517  ftc2nc  34528  sigarim  42672  sigarac  42673  sigaraf  42674  sigarmf  42675  sigarls  42678  sigardiv  42682  sharhght  42686
  Copyright terms: Public domain W3C validator