| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cjcld | Structured version Visualization version GIF version | ||
| Description: Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| cjcld | ⊢ (𝜑 → (∗‘𝐴) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | cjcl 15071 | . 2 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (∗‘𝐴) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 ℂcc 11066 ∗ccj 15062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-cj 15065 |
| This theorem is referenced by: absrpcl 15254 absmul 15260 abstri 15297 abs1m 15302 abslem2 15306 sqreulem 15326 gzcjcl 16907 mul4sqlem 16924 gzrngunit 21350 cphipipcj 25100 cphassr 25112 cph2ass 25113 tcphcphlem2 25136 pjthlem1 25337 itgabs 25736 dvcj 25854 dvmptre 25873 dvmptim 25874 tanregt0 26448 logcj 26515 cosargd 26517 root1cj 26666 lawcoslem1 26725 isosctrlem2 26729 asinlem3 26781 atandmcj 26819 atancj 26820 sum2dchr 27185 rpvmasum2 27423 dchrisum0re 27424 pjhthlem1 31320 riesz3i 31991 constrrtll 33721 constrrtlc1 33722 constrrtcclem 33724 constrrtcc 33725 constrconj 33735 constrfin 33736 constrelextdg2 33737 constrrecl 33759 constrreinvcl 33762 constrinvcl 33763 itgabsnc 37683 ftc1cnnclem 37685 ftc2nc 37696 sigarim 46849 sigarac 46850 sigaraf 46851 sigarmf 46852 sigarls 46855 sigardiv 46859 sharhght 46863 |
| Copyright terms: Public domain | W3C validator |