MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjcld Structured version   Visualization version   GIF version

Theorem cjcld 15215
Description: Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
recld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
cjcld (𝜑 → (∗‘𝐴) ∈ ℂ)

Proof of Theorem cjcld
StepHypRef Expression
1 recld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cjcl 15124 . 2 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
31, 2syl 17 1 (𝜑 → (∗‘𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6531  cc 11127  ccj 15115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-cj 15118
This theorem is referenced by:  absrpcl  15307  absmul  15313  abstri  15349  abs1m  15354  abslem2  15358  sqreulem  15378  gzcjcl  16956  mul4sqlem  16973  gzrngunit  21401  cphipipcj  25152  cphassr  25164  cph2ass  25165  tcphcphlem2  25188  pjthlem1  25389  itgabs  25788  dvcj  25906  dvmptre  25925  dvmptim  25926  tanregt0  26500  logcj  26567  cosargd  26569  root1cj  26718  lawcoslem1  26777  isosctrlem2  26781  asinlem3  26833  atandmcj  26871  atancj  26872  sum2dchr  27237  rpvmasum2  27475  dchrisum0re  27476  pjhthlem1  31372  riesz3i  32043  constrrtll  33765  constrrtlc1  33766  constrrtcclem  33768  constrrtcc  33769  constrconj  33779  constrfin  33780  constrelextdg2  33781  constrrecl  33803  constrreinvcl  33806  constrinvcl  33807  itgabsnc  37713  ftc1cnnclem  37715  ftc2nc  37726  sigarim  46880  sigarac  46881  sigaraf  46882  sigarmf  46883  sigarls  46886  sigardiv  46890  sharhght  46894
  Copyright terms: Public domain W3C validator