MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjcld Structured version   Visualization version   GIF version

Theorem cjcld 15203
Description: Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
recld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
cjcld (𝜑 → (∗‘𝐴) ∈ ℂ)

Proof of Theorem cjcld
StepHypRef Expression
1 recld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cjcl 15112 . 2 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
31, 2syl 17 1 (𝜑 → (∗‘𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  cfv 6556  cc 11158  ccj 15103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-po 5596  df-so 5597  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-cj 15106
This theorem is referenced by:  absrpcl  15295  absmul  15301  abstri  15337  abs1m  15342  abslem2  15346  sqreulem  15366  gzcjcl  16940  mul4sqlem  16957  gzrngunit  21432  cphipipcj  25222  cphassr  25234  cph2ass  25235  tcphcphlem2  25258  pjthlem1  25459  itgabs  25858  dvcj  25976  dvmptre  25995  dvmptim  25996  tanregt0  26569  logcj  26636  cosargd  26638  root1cj  26787  lawcoslem1  26846  isosctrlem2  26850  asinlem3  26902  atandmcj  26940  atancj  26941  sum2dchr  27306  rpvmasum2  27544  dchrisum0re  27545  pjhthlem1  31327  riesz3i  31998  constrconj  33605  itgabsnc  37392  ftc1cnnclem  37394  ftc2nc  37405  sigarim  46490  sigarac  46491  sigaraf  46492  sigarmf  46493  sigarls  46496  sigardiv  46500  sharhght  46504
  Copyright terms: Public domain W3C validator