![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltmuldivwd | Structured version Visualization version GIF version |
Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
Ref | Expression |
---|---|
sltdivmulwd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
sltdivmulwd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
sltdivmulwd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
sltdivmulwd.4 | ⊢ (𝜑 → 0s <s 𝐶) |
sltdivmulwd.5 | ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) |
Ref | Expression |
---|---|
sltmuldivwd | ⊢ (𝜑 → ((𝐴 ·s 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltdivmulwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | sltdivmulwd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
3 | sltdivmulwd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
4 | sltdivmulwd.4 | . . . . 5 ⊢ (𝜑 → 0s <s 𝐶) | |
5 | 4 | sgt0ne0d 27781 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 0s ) |
6 | sltdivmulwd.5 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) | |
7 | 2, 3, 5, 6 | divsclwd 28108 | . . 3 ⊢ (𝜑 → (𝐵 /su 𝐶) ∈ No ) |
8 | 1, 7, 3, 4 | sltmul1d 28086 | . 2 ⊢ (𝜑 → (𝐴 <s (𝐵 /su 𝐶) ↔ (𝐴 ·s 𝐶) <s ((𝐵 /su 𝐶) ·s 𝐶))) |
9 | 2, 3, 5, 6 | divscan1wd 28110 | . . 3 ⊢ (𝜑 → ((𝐵 /su 𝐶) ·s 𝐶) = 𝐵) |
10 | 9 | breq2d 5160 | . 2 ⊢ (𝜑 → ((𝐴 ·s 𝐶) <s ((𝐵 /su 𝐶) ·s 𝐶) ↔ (𝐴 ·s 𝐶) <s 𝐵)) |
11 | 8, 10 | bitr2d 280 | 1 ⊢ (𝜑 → ((𝐴 ·s 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 class class class wbr 5148 (class class class)co 7420 No csur 27586 <s cslt 27587 0s c0s 27768 1s c1s 27769 ·s cmuls 28019 /su cdivs 28100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-1o 8487 df-2o 8488 df-nadd 8687 df-no 27589 df-slt 27590 df-bday 27591 df-sle 27691 df-sslt 27727 df-scut 27729 df-0s 27770 df-1s 27771 df-made 27787 df-old 27788 df-left 27790 df-right 27791 df-norec 27868 df-norec2 27879 df-adds 27890 df-negs 27947 df-subs 27948 df-muls 28020 df-divs 28101 |
This theorem is referenced by: sltmuldiv2wd 28114 precsexlem9 28126 sltmuldivd 28140 |
Copyright terms: Public domain | W3C validator |