MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltmuldivwd Structured version   Visualization version   GIF version

Theorem sltmuldivwd 28244
Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.)
Hypotheses
Ref Expression
sltdivmulwd.1 (𝜑𝐴 No )
sltdivmulwd.2 (𝜑𝐵 No )
sltdivmulwd.3 (𝜑𝐶 No )
sltdivmulwd.4 (𝜑 → 0s <s 𝐶)
sltdivmulwd.5 (𝜑 → ∃𝑥 No (𝐶 ·s 𝑥) = 1s )
Assertion
Ref Expression
sltmuldivwd (𝜑 → ((𝐴 ·s 𝐶) <s 𝐵𝐴 <s (𝐵 /su 𝐶)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem sltmuldivwd
StepHypRef Expression
1 sltdivmulwd.1 . . 3 (𝜑𝐴 No )
2 sltdivmulwd.2 . . . 4 (𝜑𝐵 No )
3 sltdivmulwd.3 . . . 4 (𝜑𝐶 No )
4 sltdivmulwd.4 . . . . 5 (𝜑 → 0s <s 𝐶)
54sgt0ne0d 27898 . . . 4 (𝜑𝐶 ≠ 0s )
6 sltdivmulwd.5 . . . 4 (𝜑 → ∃𝑥 No (𝐶 ·s 𝑥) = 1s )
72, 3, 5, 6divsclwd 28239 . . 3 (𝜑 → (𝐵 /su 𝐶) ∈ No )
81, 7, 3, 4sltmul1d 28217 . 2 (𝜑 → (𝐴 <s (𝐵 /su 𝐶) ↔ (𝐴 ·s 𝐶) <s ((𝐵 /su 𝐶) ·s 𝐶)))
92, 3, 5, 6divscan1wd 28241 . . 3 (𝜑 → ((𝐵 /su 𝐶) ·s 𝐶) = 𝐵)
109breq2d 5178 . 2 (𝜑 → ((𝐴 ·s 𝐶) <s ((𝐵 /su 𝐶) ·s 𝐶) ↔ (𝐴 ·s 𝐶) <s 𝐵))
118, 10bitr2d 280 1 (𝜑 → ((𝐴 ·s 𝐶) <s 𝐵𝐴 <s (𝐵 /su 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  (class class class)co 7448   No csur 27702   <s cslt 27703   0s c0s 27885   1s c1s 27886   ·s cmuls 28150   /su cdivs 28231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-divs 28232
This theorem is referenced by:  sltmuldiv2wd  28245  precsexlem9  28257  sltmuldivd  28271
  Copyright terms: Public domain W3C validator