| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version | ||
| Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulm1 11550 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 (class class class)co 7341 ℂcc 10996 1c1 10999 · cmul 11003 -cneg 11337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-ltxr 11143 df-sub 11338 df-neg 11339 |
| This theorem is referenced by: recextlem1 11739 ofnegsub 12115 modnegd 13825 modsumfzodifsn 13843 m1expcl2 13984 remullem 15027 sqrtneglem 15165 iseraltlem2 15582 iseraltlem3 15583 fsumneg 15686 incexclem 15735 incexc 15736 risefallfac 15923 efi4p 16038 cosadd 16066 absefib 16099 efieq1re 16100 pwp1fsum 16294 bitsinv1lem 16344 bezoutlem1 16442 pythagtriplem4 16723 negcncf 24835 negcncfOLD 24836 mbfneg 25571 itg1sub 25630 itgcnlem 25711 i1fibl 25729 itgitg1 25730 itgmulc2 25755 dvmptneg 25890 dvlipcn 25919 lhop2 25940 logneg 26517 lognegb 26519 tanarg 26548 logtayl 26589 logtayl2 26591 asinlem 26798 asinlem2 26799 asinsin 26822 efiatan2 26847 2efiatan 26848 atandmtan 26850 atantan 26853 atans2 26861 dvatan 26865 basellem5 27015 lgsdir2lem4 27259 gausslemma2dlem5a 27301 lgseisenlem1 27306 lgseisenlem2 27307 rpvmasum2 27443 ostth3 27569 smcnlem 30667 ipval2 30677 dipsubdir 30818 his2sub 31062 pythagreim 32719 quad3d 32723 constrnegcl 33766 qqhval2lem 33984 fwddifnp1 36178 itgmulc2nc 37707 ftc1anclem5 37716 areacirclem1 37727 lcmineqlem8 42048 readvrec 42374 negexpidd 42694 3cubeslem3r 42699 mzpsubmpt 42755 rmym1 42947 rngunsnply 43181 reabssgn 43648 sqrtcval 43653 expgrowth 44347 isumneg 45621 climneg 45629 stoweidlem22 46039 stirlinglem5 46095 fourierdlem97 46220 sqwvfourb 46246 etransclem46 46297 smfneg 46820 sharhght 46882 sigaradd 46883 altgsumbcALT 48363 |
| Copyright terms: Public domain | W3C validator |