| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version | ||
| Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulm1 11619 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 · cmul 11073 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: recextlem1 11808 ofnegsub 12184 modnegd 13891 modsumfzodifsn 13909 m1expcl2 14050 remullem 15094 sqrtneglem 15232 iseraltlem2 15649 iseraltlem3 15650 fsumneg 15753 incexclem 15802 incexc 15803 risefallfac 15990 efi4p 16105 cosadd 16133 absefib 16166 efieq1re 16167 pwp1fsum 16361 bitsinv1lem 16411 bezoutlem1 16509 pythagtriplem4 16790 negcncf 24815 negcncfOLD 24816 mbfneg 25551 itg1sub 25610 itgcnlem 25691 i1fibl 25709 itgitg1 25710 itgmulc2 25735 dvmptneg 25870 dvlipcn 25899 lhop2 25920 logneg 26497 lognegb 26499 tanarg 26528 logtayl 26569 logtayl2 26571 asinlem 26778 asinlem2 26779 asinsin 26802 efiatan2 26827 2efiatan 26828 atandmtan 26830 atantan 26833 atans2 26841 dvatan 26845 basellem5 26995 lgsdir2lem4 27239 gausslemma2dlem5a 27281 lgseisenlem1 27286 lgseisenlem2 27287 rpvmasum2 27423 ostth3 27549 smcnlem 30626 ipval2 30636 dipsubdir 30777 his2sub 31021 pythagreim 32669 quad3d 32673 constrnegcl 33753 qqhval2lem 33971 fwddifnp1 36153 itgmulc2nc 37682 ftc1anclem5 37691 areacirclem1 37702 lcmineqlem8 42024 readvrec 42350 negexpidd 42670 3cubeslem3r 42675 mzpsubmpt 42731 rmym1 42924 rngunsnply 43158 reabssgn 43625 sqrtcval 43630 expgrowth 44324 isumneg 45600 climneg 45608 stoweidlem22 46020 stirlinglem5 46076 fourierdlem97 46201 sqwvfourb 46227 etransclem46 46278 smfneg 46801 sharhght 46863 sigaradd 46864 altgsumbcALT 48341 |
| Copyright terms: Public domain | W3C validator |