| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version | ||
| Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulm1 11579 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 1c1 11029 · cmul 11033 -cneg 11366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-neg 11368 |
| This theorem is referenced by: recextlem1 11768 ofnegsub 12144 modnegd 13851 modsumfzodifsn 13869 m1expcl2 14010 remullem 15053 sqrtneglem 15191 iseraltlem2 15608 iseraltlem3 15609 fsumneg 15712 incexclem 15761 incexc 15762 risefallfac 15949 efi4p 16064 cosadd 16092 absefib 16125 efieq1re 16126 pwp1fsum 16320 bitsinv1lem 16370 bezoutlem1 16468 pythagtriplem4 16749 negcncf 24831 negcncfOLD 24832 mbfneg 25567 itg1sub 25626 itgcnlem 25707 i1fibl 25725 itgitg1 25726 itgmulc2 25751 dvmptneg 25886 dvlipcn 25915 lhop2 25936 logneg 26513 lognegb 26515 tanarg 26544 logtayl 26585 logtayl2 26587 asinlem 26794 asinlem2 26795 asinsin 26818 efiatan2 26843 2efiatan 26844 atandmtan 26846 atantan 26849 atans2 26857 dvatan 26861 basellem5 27011 lgsdir2lem4 27255 gausslemma2dlem5a 27297 lgseisenlem1 27302 lgseisenlem2 27303 rpvmasum2 27439 ostth3 27565 smcnlem 30659 ipval2 30669 dipsubdir 30810 his2sub 31054 pythagreim 32702 quad3d 32706 constrnegcl 33729 qqhval2lem 33947 fwddifnp1 36138 itgmulc2nc 37667 ftc1anclem5 37676 areacirclem1 37687 lcmineqlem8 42009 readvrec 42335 negexpidd 42655 3cubeslem3r 42660 mzpsubmpt 42716 rmym1 42908 rngunsnply 43142 reabssgn 43609 sqrtcval 43614 expgrowth 44308 isumneg 45584 climneg 45592 stoweidlem22 46004 stirlinglem5 46060 fourierdlem97 46185 sqwvfourb 46211 etransclem46 46262 smfneg 46785 sharhght 46847 sigaradd 46848 altgsumbcALT 48325 |
| Copyright terms: Public domain | W3C validator |