| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version | ||
| Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulm1 11678 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 1c1 11130 · cmul 11134 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: recextlem1 11867 ofnegsub 12238 modnegd 13944 modsumfzodifsn 13962 m1expcl2 14103 remullem 15147 sqrtneglem 15285 iseraltlem2 15699 iseraltlem3 15700 fsumneg 15803 incexclem 15852 incexc 15853 risefallfac 16040 efi4p 16155 cosadd 16183 absefib 16216 efieq1re 16217 pwp1fsum 16410 bitsinv1lem 16460 bezoutlem1 16558 pythagtriplem4 16839 negcncf 24866 negcncfOLD 24867 mbfneg 25603 itg1sub 25662 itgcnlem 25743 i1fibl 25761 itgitg1 25762 itgmulc2 25787 dvmptneg 25922 dvlipcn 25951 lhop2 25972 logneg 26549 lognegb 26551 tanarg 26580 logtayl 26621 logtayl2 26623 asinlem 26830 asinlem2 26831 asinsin 26854 efiatan2 26879 2efiatan 26880 atandmtan 26882 atantan 26885 atans2 26893 dvatan 26897 basellem5 27047 lgsdir2lem4 27291 gausslemma2dlem5a 27333 lgseisenlem1 27338 lgseisenlem2 27339 rpvmasum2 27475 ostth3 27601 smcnlem 30678 ipval2 30688 dipsubdir 30829 his2sub 31073 pythagreim 32723 quad3d 32727 constrnegcl 33797 qqhval2lem 34012 fwddifnp1 36183 itgmulc2nc 37712 ftc1anclem5 37721 areacirclem1 37732 lcmineqlem8 42049 readvrec 42405 negexpidd 42705 3cubeslem3r 42710 mzpsubmpt 42766 rmym1 42959 rngunsnply 43193 reabssgn 43660 sqrtcval 43665 expgrowth 44359 isumneg 45631 climneg 45639 stoweidlem22 46051 stirlinglem5 46107 fourierdlem97 46232 sqwvfourb 46258 etransclem46 46309 smfneg 46832 sharhght 46894 sigaradd 46895 altgsumbcALT 48328 |
| Copyright terms: Public domain | W3C validator |