| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version | ||
| Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulm1 11568 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11014 1c1 11017 · cmul 11021 -cneg 11355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-ltxr 11161 df-sub 11356 df-neg 11357 |
| This theorem is referenced by: recextlem1 11757 ofnegsub 12133 modnegd 13843 modsumfzodifsn 13861 m1expcl2 14002 remullem 15045 sqrtneglem 15183 iseraltlem2 15600 iseraltlem3 15601 fsumneg 15704 incexclem 15753 incexc 15754 risefallfac 15941 efi4p 16056 cosadd 16084 absefib 16117 efieq1re 16118 pwp1fsum 16312 bitsinv1lem 16362 bezoutlem1 16460 pythagtriplem4 16741 negcncf 24852 negcncfOLD 24853 mbfneg 25588 itg1sub 25647 itgcnlem 25728 i1fibl 25746 itgitg1 25747 itgmulc2 25772 dvmptneg 25907 dvlipcn 25936 lhop2 25957 logneg 26534 lognegb 26536 tanarg 26565 logtayl 26606 logtayl2 26608 asinlem 26815 asinlem2 26816 asinsin 26839 efiatan2 26864 2efiatan 26865 atandmtan 26867 atantan 26870 atans2 26878 dvatan 26882 basellem5 27032 lgsdir2lem4 27276 gausslemma2dlem5a 27318 lgseisenlem1 27323 lgseisenlem2 27324 rpvmasum2 27460 ostth3 27586 smcnlem 30688 ipval2 30698 dipsubdir 30839 his2sub 31083 pythagreim 32740 quad3d 32744 constrnegcl 33787 qqhval2lem 34005 fwddifnp1 36220 itgmulc2nc 37738 ftc1anclem5 37747 areacirclem1 37758 lcmineqlem8 42139 readvrec 42470 negexpidd 42789 3cubeslem3r 42794 mzpsubmpt 42850 rmym1 43042 rngunsnply 43276 reabssgn 43743 sqrtcval 43748 expgrowth 44442 isumneg 45716 climneg 45724 stoweidlem22 46134 stirlinglem5 46190 fourierdlem97 46315 sqwvfourb 46341 etransclem46 46392 smfneg 46915 sharhght 46977 sigaradd 46978 altgsumbcALT 48467 |
| Copyright terms: Public domain | W3C validator |