Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version |
Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulm1 11416 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 1c1 10872 · cmul 10876 -cneg 11206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-neg 11208 |
This theorem is referenced by: recextlem1 11605 ofnegsub 11971 modnegd 13646 modsumfzodifsn 13664 m1expcl2 13804 remullem 14839 sqrtneglem 14978 iseraltlem2 15394 iseraltlem3 15395 fsumneg 15499 incexclem 15548 incexc 15549 risefallfac 15734 efi4p 15846 cosadd 15874 absefib 15907 efieq1re 15908 pwp1fsum 16100 bitsinv1lem 16148 bezoutlem1 16247 pythagtriplem4 16520 negcncf 24085 mbfneg 24814 itg1sub 24874 itgcnlem 24954 i1fibl 24972 itgitg1 24973 itgmulc2 24998 dvmptneg 25130 dvlipcn 25158 lhop2 25179 logneg 25743 lognegb 25745 tanarg 25774 logtayl 25815 logtayl2 25817 asinlem 26018 asinlem2 26019 asinsin 26042 efiatan2 26067 2efiatan 26068 atandmtan 26070 atantan 26073 atans2 26081 dvatan 26085 basellem5 26234 lgsdir2lem4 26476 gausslemma2dlem5a 26518 lgseisenlem1 26523 lgseisenlem2 26524 rpvmasum2 26660 ostth3 26786 smcnlem 29059 ipval2 29069 dipsubdir 29210 his2sub 29454 qqhval2lem 31931 fwddifnp1 34467 itgmulc2nc 35845 ftc1anclem5 35854 areacirclem1 35865 lcmineqlem8 40044 negexpidd 40504 3cubeslem3r 40509 mzpsubmpt 40565 rmym1 40757 rngunsnply 40998 reabssgn 41244 sqrtcval 41249 expgrowth 41953 isumneg 43143 climneg 43151 stoweidlem22 43563 stirlinglem5 43619 fourierdlem97 43744 sqwvfourb 43770 etransclem46 43821 smfneg 44337 sharhght 44381 sigaradd 44382 altgsumbcALT 45689 |
Copyright terms: Public domain | W3C validator |