![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version |
Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulm1 11731 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 · cmul 11189 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 |
This theorem is referenced by: recextlem1 11920 ofnegsub 12291 modnegd 13977 modsumfzodifsn 13995 m1expcl2 14136 remullem 15177 sqrtneglem 15315 iseraltlem2 15731 iseraltlem3 15732 fsumneg 15835 incexclem 15884 incexc 15885 risefallfac 16072 efi4p 16185 cosadd 16213 absefib 16246 efieq1re 16247 pwp1fsum 16439 bitsinv1lem 16487 bezoutlem1 16586 pythagtriplem4 16866 negcncf 24967 negcncfOLD 24968 mbfneg 25704 itg1sub 25764 itgcnlem 25845 i1fibl 25863 itgitg1 25864 itgmulc2 25889 dvmptneg 26024 dvlipcn 26053 lhop2 26074 logneg 26648 lognegb 26650 tanarg 26679 logtayl 26720 logtayl2 26722 asinlem 26929 asinlem2 26930 asinsin 26953 efiatan2 26978 2efiatan 26979 atandmtan 26981 atantan 26984 atans2 26992 dvatan 26996 basellem5 27146 lgsdir2lem4 27390 gausslemma2dlem5a 27432 lgseisenlem1 27437 lgseisenlem2 27438 rpvmasum2 27574 ostth3 27700 smcnlem 30729 ipval2 30739 dipsubdir 30880 his2sub 31124 quad3d 32757 qqhval2lem 33927 fwddifnp1 36129 itgmulc2nc 37648 ftc1anclem5 37657 areacirclem1 37668 lcmineqlem8 41993 negexpidd 42638 3cubeslem3r 42643 mzpsubmpt 42699 rmym1 42892 rngunsnply 43130 reabssgn 43598 sqrtcval 43603 expgrowth 44304 isumneg 45523 climneg 45531 stoweidlem22 45943 stirlinglem5 45999 fourierdlem97 46124 sqwvfourb 46150 etransclem46 46201 smfneg 46724 sharhght 46786 sigaradd 46787 altgsumbcALT 48078 |
Copyright terms: Public domain | W3C validator |