| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version | ||
| Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulm1 11626 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 · cmul 11080 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: recextlem1 11815 ofnegsub 12191 modnegd 13898 modsumfzodifsn 13916 m1expcl2 14057 remullem 15101 sqrtneglem 15239 iseraltlem2 15656 iseraltlem3 15657 fsumneg 15760 incexclem 15809 incexc 15810 risefallfac 15997 efi4p 16112 cosadd 16140 absefib 16173 efieq1re 16174 pwp1fsum 16368 bitsinv1lem 16418 bezoutlem1 16516 pythagtriplem4 16797 negcncf 24822 negcncfOLD 24823 mbfneg 25558 itg1sub 25617 itgcnlem 25698 i1fibl 25716 itgitg1 25717 itgmulc2 25742 dvmptneg 25877 dvlipcn 25906 lhop2 25927 logneg 26504 lognegb 26506 tanarg 26535 logtayl 26576 logtayl2 26578 asinlem 26785 asinlem2 26786 asinsin 26809 efiatan2 26834 2efiatan 26835 atandmtan 26837 atantan 26840 atans2 26848 dvatan 26852 basellem5 27002 lgsdir2lem4 27246 gausslemma2dlem5a 27288 lgseisenlem1 27293 lgseisenlem2 27294 rpvmasum2 27430 ostth3 27556 smcnlem 30633 ipval2 30643 dipsubdir 30784 his2sub 31028 pythagreim 32676 quad3d 32680 constrnegcl 33760 qqhval2lem 33978 fwddifnp1 36160 itgmulc2nc 37689 ftc1anclem5 37698 areacirclem1 37709 lcmineqlem8 42031 readvrec 42357 negexpidd 42677 3cubeslem3r 42682 mzpsubmpt 42738 rmym1 42931 rngunsnply 43165 reabssgn 43632 sqrtcval 43637 expgrowth 44331 isumneg 45607 climneg 45615 stoweidlem22 46027 stirlinglem5 46083 fourierdlem97 46208 sqwvfourb 46234 etransclem46 46285 smfneg 46808 sharhght 46870 sigaradd 46871 altgsumbcALT 48345 |
| Copyright terms: Public domain | W3C validator |