![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version |
Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulm1 10882 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 (class class class)co 6976 ℂcc 10333 1c1 10336 · cmul 10340 -cneg 10671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-ltxr 10479 df-sub 10672 df-neg 10673 |
This theorem is referenced by: recextlem1 11071 ofnegsub 11437 modnegd 13109 modsumfzodifsn 13127 m1expcl2 13266 remullem 14348 sqrtneglem 14487 iseraltlem2 14900 iseraltlem3 14901 fsumneg 15002 incexclem 15051 incexc 15052 risefallfac 15238 efi4p 15350 cosadd 15378 absefib 15411 efieq1re 15412 pwp1fsum 15602 bitsinv1lem 15650 bezoutlem1 15743 pythagtriplem4 16012 negcncf 23229 mbfneg 23954 itg1sub 24013 itgcnlem 24093 i1fibl 24111 itgitg1 24112 itgmulc2 24137 dvmptneg 24266 dvlipcn 24294 lhop2 24315 logneg 24872 lognegb 24874 tanarg 24903 logtayl 24944 logtayl2 24946 asinlem 25147 asinlem2 25148 asinsin 25171 efiatan2 25196 2efiatan 25197 atandmtan 25199 atantan 25202 atans2 25210 dvatan 25214 basellem5 25364 lgsdir2lem4 25606 gausslemma2dlem5a 25648 lgseisenlem1 25653 lgseisenlem2 25654 rpvmasum2 25790 ostth3 25916 smcnlem 28251 ipval2 28261 dipsubdir 28402 his2sub 28648 qqhval2lem 30863 fwddifnp1 33144 itgmulc2nc 34398 ftc1anclem5 34409 areacirclem1 34420 mzpsubmpt 38732 rmym1 38925 rngunsnply 39166 expgrowth 40080 isumneg 41312 climneg 41320 stoweidlem22 41736 stirlinglem5 41792 fourierdlem97 41917 sqwvfourb 41943 etransclem46 41994 smfneg 42507 sharhght 42551 sigaradd 42552 altgsumbcALT 43763 |
Copyright terms: Public domain | W3C validator |