Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version |
Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulm1 11346 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 · cmul 10807 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: recextlem1 11535 ofnegsub 11901 modnegd 13574 modsumfzodifsn 13592 m1expcl2 13732 remullem 14767 sqrtneglem 14906 iseraltlem2 15322 iseraltlem3 15323 fsumneg 15427 incexclem 15476 incexc 15477 risefallfac 15662 efi4p 15774 cosadd 15802 absefib 15835 efieq1re 15836 pwp1fsum 16028 bitsinv1lem 16076 bezoutlem1 16175 pythagtriplem4 16448 negcncf 23991 mbfneg 24719 itg1sub 24779 itgcnlem 24859 i1fibl 24877 itgitg1 24878 itgmulc2 24903 dvmptneg 25035 dvlipcn 25063 lhop2 25084 logneg 25648 lognegb 25650 tanarg 25679 logtayl 25720 logtayl2 25722 asinlem 25923 asinlem2 25924 asinsin 25947 efiatan2 25972 2efiatan 25973 atandmtan 25975 atantan 25978 atans2 25986 dvatan 25990 basellem5 26139 lgsdir2lem4 26381 gausslemma2dlem5a 26423 lgseisenlem1 26428 lgseisenlem2 26429 rpvmasum2 26565 ostth3 26691 smcnlem 28960 ipval2 28970 dipsubdir 29111 his2sub 29355 qqhval2lem 31831 fwddifnp1 34394 itgmulc2nc 35772 ftc1anclem5 35781 areacirclem1 35792 lcmineqlem8 39972 negexpidd 40420 3cubeslem3r 40425 mzpsubmpt 40481 rmym1 40673 rngunsnply 40914 reabssgn 41133 sqrtcval 41138 expgrowth 41842 isumneg 43033 climneg 43041 stoweidlem22 43453 stirlinglem5 43509 fourierdlem97 43634 sqwvfourb 43660 etransclem46 43711 smfneg 44224 sharhght 44268 sigaradd 44269 altgsumbcALT 45577 |
Copyright terms: Public domain | W3C validator |