| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supsubc | Structured version Visualization version GIF version | ||
| Description: The supremum function distributes over subtraction in a sense similar to that in supaddc 12150. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| supsubc.a1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| supsubc.a2 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| supsubc.a3 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| supsubc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| supsubc.c | ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵)} |
| Ref | Expression |
|---|---|
| supsubc | ⊢ (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supsubc.c | . . . . 5 ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵)} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵)}) |
| 3 | supsubc.a1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 4 | 3 | sselda 3946 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℝ) |
| 5 | 4 | recnd 11202 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℂ) |
| 6 | supsubc.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 7 | 6 | recnd 11202 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 9 | 5, 8 | negsubd 11539 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝑣 + -𝐵) = (𝑣 − 𝐵)) |
| 10 | 9 | eqcomd 2735 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝑣 − 𝐵) = (𝑣 + -𝐵)) |
| 11 | 10 | eqeq2d 2740 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝑧 = (𝑣 − 𝐵) ↔ 𝑧 = (𝑣 + -𝐵))) |
| 12 | 11 | rexbidva 3155 | . . . . 5 ⊢ (𝜑 → (∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵) ↔ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵))) |
| 13 | 12 | abbidv 2795 | . . . 4 ⊢ (𝜑 → {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵)} = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}) |
| 14 | eqidd 2730 | . . . 4 ⊢ (𝜑 → {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}) | |
| 15 | 2, 13, 14 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}) |
| 16 | 15 | supeq1d 9397 | . 2 ⊢ (𝜑 → sup(𝐶, ℝ, < ) = sup({𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < )) |
| 17 | supsubc.a2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 18 | supsubc.a3 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
| 19 | 6 | renegcld 11605 | . . . 4 ⊢ (𝜑 → -𝐵 ∈ ℝ) |
| 20 | eqid 2729 | . . . 4 ⊢ {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)} | |
| 21 | 3, 17, 18, 19, 20 | supaddc 12150 | . . 3 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = sup({𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < )) |
| 22 | 21 | eqcomd 2735 | . 2 ⊢ (𝜑 → sup({𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ) = (sup(𝐴, ℝ, < ) + -𝐵)) |
| 23 | suprcl 12143 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ) | |
| 24 | 3, 17, 18, 23 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) |
| 25 | 24 | recnd 11202 | . . 3 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ) |
| 26 | 25, 7 | negsubd 11539 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = (sup(𝐴, ℝ, < ) − 𝐵)) |
| 27 | 16, 22, 26 | 3eqtrrd 2769 | 1 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 (class class class)co 7387 supcsup 9391 ℂcc 11066 ℝcr 11067 + caddc 11071 < clt 11208 ≤ cle 11209 − cmin 11405 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: hoidmvlelem1 46593 |
| Copyright terms: Public domain | W3C validator |