Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supsubc Structured version   Visualization version   GIF version

Theorem supsubc 43674
Description: The supremum function distributes over subtraction in a sense similar to that in supaddc 12127. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
supsubc.a1 (𝜑𝐴 ⊆ ℝ)
supsubc.a2 (𝜑𝐴 ≠ ∅)
supsubc.a3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
supsubc.b (𝜑𝐵 ∈ ℝ)
supsubc.c 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)}
Assertion
Ref Expression
supsubc (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝑣,𝐴,𝑥,𝑦,𝑧   𝑣,𝐵,𝑥,𝑦,𝑧   𝜑,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧,𝑣)

Proof of Theorem supsubc
StepHypRef Expression
1 supsubc.c . . . . 5 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)}
21a1i 11 . . . 4 (𝜑𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)})
3 supsubc.a1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
43sselda 3945 . . . . . . . . . 10 ((𝜑𝑣𝐴) → 𝑣 ∈ ℝ)
54recnd 11188 . . . . . . . . 9 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
6 supsubc.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
76recnd 11188 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
87adantr 482 . . . . . . . . 9 ((𝜑𝑣𝐴) → 𝐵 ∈ ℂ)
95, 8negsubd 11523 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝑣 + -𝐵) = (𝑣𝐵))
109eqcomd 2739 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑣𝐵) = (𝑣 + -𝐵))
1110eqeq2d 2744 . . . . . 6 ((𝜑𝑣𝐴) → (𝑧 = (𝑣𝐵) ↔ 𝑧 = (𝑣 + -𝐵)))
1211rexbidva 3170 . . . . 5 (𝜑 → (∃𝑣𝐴 𝑧 = (𝑣𝐵) ↔ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)))
1312abbidv 2802 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
14 eqidd 2734 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
152, 13, 143eqtrd 2777 . . 3 (𝜑𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
1615supeq1d 9387 . 2 (𝜑 → sup(𝐶, ℝ, < ) = sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ))
17 supsubc.a2 . . . 4 (𝜑𝐴 ≠ ∅)
18 supsubc.a3 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
196renegcld 11587 . . . 4 (𝜑 → -𝐵 ∈ ℝ)
20 eqid 2733 . . . 4 {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}
213, 17, 18, 19, 20supaddc 12127 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ))
2221eqcomd 2739 . 2 (𝜑 → sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ) = (sup(𝐴, ℝ, < ) + -𝐵))
23 suprcl 12120 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
243, 17, 18, 23syl3anc 1372 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
2524recnd 11188 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ)
2625, 7negsubd 11523 . 2 (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = (sup(𝐴, ℝ, < ) − 𝐵))
2716, 22, 263eqtrrd 2778 1 (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  wne 2940  wral 3061  wrex 3070  wss 3911  c0 4283   class class class wbr 5106  (class class class)co 7358  supcsup 9381  cc 11054  cr 11055   + caddc 11059   < clt 11194  cle 11195  cmin 11390  -cneg 11391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393
This theorem is referenced by:  hoidmvlelem1  44922
  Copyright terms: Public domain W3C validator