Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supsubc Structured version   Visualization version   GIF version

Theorem supsubc 45356
Description: The supremum function distributes over subtraction in a sense similar to that in supaddc 12157. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
supsubc.a1 (𝜑𝐴 ⊆ ℝ)
supsubc.a2 (𝜑𝐴 ≠ ∅)
supsubc.a3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
supsubc.b (𝜑𝐵 ∈ ℝ)
supsubc.c 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)}
Assertion
Ref Expression
supsubc (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝑣,𝐴,𝑥,𝑦,𝑧   𝑣,𝐵,𝑥,𝑦,𝑧   𝜑,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧,𝑣)

Proof of Theorem supsubc
StepHypRef Expression
1 supsubc.c . . . . 5 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)}
21a1i 11 . . . 4 (𝜑𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)})
3 supsubc.a1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
43sselda 3949 . . . . . . . . . 10 ((𝜑𝑣𝐴) → 𝑣 ∈ ℝ)
54recnd 11209 . . . . . . . . 9 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
6 supsubc.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
76recnd 11209 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
87adantr 480 . . . . . . . . 9 ((𝜑𝑣𝐴) → 𝐵 ∈ ℂ)
95, 8negsubd 11546 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝑣 + -𝐵) = (𝑣𝐵))
109eqcomd 2736 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑣𝐵) = (𝑣 + -𝐵))
1110eqeq2d 2741 . . . . . 6 ((𝜑𝑣𝐴) → (𝑧 = (𝑣𝐵) ↔ 𝑧 = (𝑣 + -𝐵)))
1211rexbidva 3156 . . . . 5 (𝜑 → (∃𝑣𝐴 𝑧 = (𝑣𝐵) ↔ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)))
1312abbidv 2796 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
14 eqidd 2731 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
152, 13, 143eqtrd 2769 . . 3 (𝜑𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
1615supeq1d 9404 . 2 (𝜑 → sup(𝐶, ℝ, < ) = sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ))
17 supsubc.a2 . . . 4 (𝜑𝐴 ≠ ∅)
18 supsubc.a3 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
196renegcld 11612 . . . 4 (𝜑 → -𝐵 ∈ ℝ)
20 eqid 2730 . . . 4 {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}
213, 17, 18, 19, 20supaddc 12157 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ))
2221eqcomd 2736 . 2 (𝜑 → sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ) = (sup(𝐴, ℝ, < ) + -𝐵))
23 suprcl 12150 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
243, 17, 18, 23syl3anc 1373 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
2524recnd 11209 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ)
2625, 7negsubd 11546 . 2 (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = (sup(𝐴, ℝ, < ) − 𝐵))
2716, 22, 263eqtrrd 2770 1 (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   class class class wbr 5110  (class class class)co 7390  supcsup 9398  cc 11073  cr 11074   + caddc 11078   < clt 11215  cle 11216  cmin 11412  -cneg 11413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  hoidmvlelem1  46600
  Copyright terms: Public domain W3C validator