Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supsubc Structured version   Visualization version   GIF version

Theorem supsubc 45380
Description: The supremum function distributes over subtraction in a sense similar to that in supaddc 12209. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
supsubc.a1 (𝜑𝐴 ⊆ ℝ)
supsubc.a2 (𝜑𝐴 ≠ ∅)
supsubc.a3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
supsubc.b (𝜑𝐵 ∈ ℝ)
supsubc.c 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)}
Assertion
Ref Expression
supsubc (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝑣,𝐴,𝑥,𝑦,𝑧   𝑣,𝐵,𝑥,𝑦,𝑧   𝜑,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧,𝑣)

Proof of Theorem supsubc
StepHypRef Expression
1 supsubc.c . . . . 5 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)}
21a1i 11 . . . 4 (𝜑𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)})
3 supsubc.a1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
43sselda 3958 . . . . . . . . . 10 ((𝜑𝑣𝐴) → 𝑣 ∈ ℝ)
54recnd 11263 . . . . . . . . 9 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
6 supsubc.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
76recnd 11263 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
87adantr 480 . . . . . . . . 9 ((𝜑𝑣𝐴) → 𝐵 ∈ ℂ)
95, 8negsubd 11600 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝑣 + -𝐵) = (𝑣𝐵))
109eqcomd 2741 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑣𝐵) = (𝑣 + -𝐵))
1110eqeq2d 2746 . . . . . 6 ((𝜑𝑣𝐴) → (𝑧 = (𝑣𝐵) ↔ 𝑧 = (𝑣 + -𝐵)))
1211rexbidva 3162 . . . . 5 (𝜑 → (∃𝑣𝐴 𝑧 = (𝑣𝐵) ↔ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)))
1312abbidv 2801 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
14 eqidd 2736 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
152, 13, 143eqtrd 2774 . . 3 (𝜑𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
1615supeq1d 9458 . 2 (𝜑 → sup(𝐶, ℝ, < ) = sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ))
17 supsubc.a2 . . . 4 (𝜑𝐴 ≠ ∅)
18 supsubc.a3 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
196renegcld 11664 . . . 4 (𝜑 → -𝐵 ∈ ℝ)
20 eqid 2735 . . . 4 {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}
213, 17, 18, 19, 20supaddc 12209 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ))
2221eqcomd 2741 . 2 (𝜑 → sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ) = (sup(𝐴, ℝ, < ) + -𝐵))
23 suprcl 12202 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
243, 17, 18, 23syl3anc 1373 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
2524recnd 11263 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ)
2625, 7negsubd 11600 . 2 (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = (sup(𝐴, ℝ, < ) − 𝐵))
2716, 22, 263eqtrrd 2775 1 (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  wss 3926  c0 4308   class class class wbr 5119  (class class class)co 7405  supcsup 9452  cc 11127  cr 11128   + caddc 11132   < clt 11269  cle 11270  cmin 11466  -cneg 11467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469
This theorem is referenced by:  hoidmvlelem1  46624
  Copyright terms: Public domain W3C validator