Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supsubc Structured version   Visualization version   GIF version

Theorem supsubc 41483
Description: The supremum function distributes over subtraction in a sense similar to that in supaddc 11600. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
supsubc.a1 (𝜑𝐴 ⊆ ℝ)
supsubc.a2 (𝜑𝐴 ≠ ∅)
supsubc.a3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
supsubc.b (𝜑𝐵 ∈ ℝ)
supsubc.c 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)}
Assertion
Ref Expression
supsubc (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝑣,𝐴,𝑥,𝑦,𝑧   𝑣,𝐵,𝑥,𝑦,𝑧   𝜑,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧,𝑣)

Proof of Theorem supsubc
StepHypRef Expression
1 supsubc.c . . . . 5 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)}
21a1i 11 . . . 4 (𝜑𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)})
3 supsubc.a1 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
43sselda 3970 . . . . . . . . . 10 ((𝜑𝑣𝐴) → 𝑣 ∈ ℝ)
54recnd 10661 . . . . . . . . 9 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
6 supsubc.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
76recnd 10661 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
87adantr 481 . . . . . . . . 9 ((𝜑𝑣𝐴) → 𝐵 ∈ ℂ)
95, 8negsubd 10995 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝑣 + -𝐵) = (𝑣𝐵))
109eqcomd 2830 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑣𝐵) = (𝑣 + -𝐵))
1110eqeq2d 2835 . . . . . 6 ((𝜑𝑣𝐴) → (𝑧 = (𝑣𝐵) ↔ 𝑧 = (𝑣 + -𝐵)))
1211rexbidva 3300 . . . . 5 (𝜑 → (∃𝑣𝐴 𝑧 = (𝑣𝐵) ↔ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)))
1312abbidv 2889 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
14 eqidd 2825 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
152, 13, 143eqtrd 2864 . . 3 (𝜑𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)})
1615supeq1d 8902 . 2 (𝜑 → sup(𝐶, ℝ, < ) = sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ))
17 supsubc.a2 . . . 4 (𝜑𝐴 ≠ ∅)
18 supsubc.a3 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
196renegcld 11059 . . . 4 (𝜑 → -𝐵 ∈ ℝ)
20 eqid 2824 . . . 4 {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}
213, 17, 18, 19, 20supaddc 11600 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ))
2221eqcomd 2830 . 2 (𝜑 → sup({𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ) = (sup(𝐴, ℝ, < ) + -𝐵))
23 suprcl 11593 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
243, 17, 18, 23syl3anc 1365 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
2524recnd 10661 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ)
2625, 7negsubd 10995 . 2 (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = (sup(𝐴, ℝ, < ) − 𝐵))
2716, 22, 263eqtrrd 2865 1 (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2106  {cab 2802  wne 3020  wral 3142  wrex 3143  wss 3939  c0 4294   class class class wbr 5062  (class class class)co 7151  supcsup 8896  cc 10527  cr 10528   + caddc 10532   < clt 10667  cle 10668  cmin 10862  -cneg 10863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865
This theorem is referenced by:  hoidmvlelem1  42740
  Copyright terms: Public domain W3C validator