MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerlem2 Structured version   Visualization version   GIF version

Theorem cramerlem2 22609
Description: Lemma 2 for cramer 22612. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramerlem2 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   · ,𝑖   / ,𝑖   𝑧,𝐵   𝑧,𝐷   𝑧,𝑁,𝑖   𝑧,𝑅   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐴(𝑧,𝑖)   / (𝑧)   · (𝑧)

Proof of Theorem cramerlem2
StepHypRef Expression
1 simpll1 1213 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑅 ∈ CRing)
2 simpll2 1214 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝑋𝐵𝑌𝑉))
3 simpll3 1215 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝐷𝑋) ∈ (Unit‘𝑅))
4 simplr 768 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑧𝑉)
5 simpr 484 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝑋 · 𝑧) = 𝑌)
6 cramer.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
7 cramer.b . . . . 5 𝐵 = (Base‘𝐴)
8 cramer.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
9 cramer.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
10 cramer.x . . . . 5 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
11 cramer.q . . . . 5 / = (/r𝑅)
126, 7, 8, 9, 10, 11cramerlem1 22608 . . . 4 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑧𝑉 ∧ (𝑋 · 𝑧) = 𝑌)) → 𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
131, 2, 3, 4, 5, 12syl113anc 1384 . . 3 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
1413ex 412 . 2 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) → ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
1514ralrimiva 3124 1 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cop 4581  cmpt 5174  cfv 6487  (class class class)co 7352  m cmap 8756  Basecbs 17126  CRingccrg 20158  Unitcui 20279  /rcdvr 20324   Mat cmat 22328   maVecMul cmvmul 22461   matRepV cmatrepV 22478   maDet cmdat 22505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-addf 11091  ax-mulf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-xnn0 12461  df-z 12475  df-dec 12595  df-uz 12739  df-rp 12897  df-fz 13414  df-fzo 13561  df-seq 13915  df-exp 13975  df-hash 14244  df-word 14427  df-lsw 14476  df-concat 14484  df-s1 14510  df-substr 14555  df-pfx 14585  df-splice 14663  df-reverse 14672  df-s2 14761  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-0g 17351  df-gsum 17352  df-prds 17357  df-pws 17359  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-submnd 18698  df-efmnd 18783  df-grp 18855  df-minusg 18856  df-sbg 18857  df-mulg 18987  df-subg 19042  df-ghm 19131  df-gim 19177  df-cntz 19235  df-oppg 19264  df-symg 19288  df-pmtr 19360  df-psgn 19409  df-evpm 19410  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-srg 20111  df-ring 20159  df-cring 20160  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-dvr 20325  df-rhm 20396  df-subrng 20467  df-subrg 20491  df-drng 20652  df-lmod 20801  df-lss 20871  df-sra 21113  df-rgmod 21114  df-cnfld 21298  df-zring 21390  df-zrh 21446  df-dsmm 21675  df-frlm 21690  df-mamu 22312  df-mat 22329  df-mvmul 22462  df-marrep 22479  df-marepv 22480  df-subma 22498  df-mdet 22506  df-minmar1 22556
This theorem is referenced by:  cramerlem3  22610
  Copyright terms: Public domain W3C validator