| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cramerlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for cramer 22560. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
| Ref | Expression |
|---|---|
| cramer.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cramer.b | ⊢ 𝐵 = (Base‘𝐴) |
| cramer.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| cramer.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| cramer.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| cramer.q | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| cramerlem2 | ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll1 1213 | . . . 4 ⊢ ((((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧 ∈ 𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑅 ∈ CRing) | |
| 2 | simpll2 1214 | . . . 4 ⊢ ((((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧 ∈ 𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) | |
| 3 | simpll3 1215 | . . . 4 ⊢ ((((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧 ∈ 𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝐷‘𝑋) ∈ (Unit‘𝑅)) | |
| 4 | simplr 768 | . . . 4 ⊢ ((((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧 ∈ 𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑧 ∈ 𝑉) | |
| 5 | simpr 484 | . . . 4 ⊢ ((((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧 ∈ 𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝑋 · 𝑧) = 𝑌) | |
| 6 | cramer.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 7 | cramer.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 8 | cramer.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 9 | cramer.d | . . . . 5 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 10 | cramer.x | . . . . 5 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 11 | cramer.q | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 12 | 6, 7, 8, 9, 10, 11 | cramerlem1 22556 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑧 ∈ 𝑉 ∧ (𝑋 · 𝑧) = 𝑌)) → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) |
| 13 | 1, 2, 3, 4, 5, 12 | syl113anc 1384 | . . 3 ⊢ ((((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧 ∈ 𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) |
| 14 | 13 | ex 412 | . 2 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧 ∈ 𝑉) → ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) |
| 15 | 14 | ralrimiva 3121 | 1 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4579 ↦ cmpt 5169 ‘cfv 6476 (class class class)co 7340 ↑m cmap 8744 Basecbs 17107 CRingccrg 20106 Unitcui 20227 /rcdvr 20272 Mat cmat 22276 maVecMul cmvmul 22409 matRepV cmatrepV 22426 maDet cmdat 22453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 ax-addf 11076 ax-mulf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4895 df-iun 4940 df-iin 4941 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-se 5567 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-of 7604 df-om 7791 df-1st 7915 df-2nd 7916 df-supp 8085 df-tpos 8150 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-2o 8380 df-er 8616 df-map 8746 df-pm 8747 df-ixp 8816 df-en 8864 df-dom 8865 df-sdom 8866 df-fin 8867 df-fsupp 9240 df-sup 9320 df-oi 9390 df-card 9823 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-div 11766 df-nn 12117 df-2 12179 df-3 12180 df-4 12181 df-5 12182 df-6 12183 df-7 12184 df-8 12185 df-9 12186 df-n0 12373 df-xnn0 12446 df-z 12460 df-dec 12580 df-uz 12724 df-rp 12882 df-fz 13399 df-fzo 13546 df-seq 13897 df-exp 13957 df-hash 14226 df-word 14409 df-lsw 14458 df-concat 14466 df-s1 14491 df-substr 14536 df-pfx 14566 df-splice 14644 df-reverse 14653 df-s2 14742 df-struct 17045 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17108 df-ress 17129 df-plusg 17161 df-mulr 17162 df-starv 17163 df-sca 17164 df-vsca 17165 df-ip 17166 df-tset 17167 df-ple 17168 df-ds 17170 df-unif 17171 df-hom 17172 df-cco 17173 df-0g 17332 df-gsum 17333 df-prds 17338 df-pws 17340 df-mre 17475 df-mrc 17476 df-acs 17478 df-mgm 18501 df-sgrp 18580 df-mnd 18596 df-mhm 18644 df-submnd 18645 df-efmnd 18730 df-grp 18802 df-minusg 18803 df-sbg 18804 df-mulg 18934 df-subg 18989 df-ghm 19079 df-gim 19125 df-cntz 19183 df-oppg 19212 df-symg 19236 df-pmtr 19308 df-psgn 19357 df-evpm 19358 df-cmn 19648 df-abl 19649 df-mgp 20013 df-rng 20025 df-ur 20054 df-srg 20059 df-ring 20107 df-cring 20108 df-oppr 20209 df-dvdsr 20229 df-unit 20230 df-invr 20260 df-dvr 20273 df-rhm 20344 df-subrng 20415 df-subrg 20439 df-drng 20600 df-lmod 20749 df-lss 20819 df-sra 21061 df-rgmod 21062 df-cnfld 21246 df-zring 21338 df-zrh 21394 df-dsmm 21623 df-frlm 21638 df-mamu 22260 df-mat 22277 df-mvmul 22410 df-marrep 22427 df-marepv 22428 df-subma 22446 df-mdet 22454 df-minmar1 22504 |
| This theorem is referenced by: cramerlem3 22558 |
| Copyright terms: Public domain | W3C validator |