MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerlem2 Structured version   Visualization version   GIF version

Theorem cramerlem2 22557
Description: Lemma 2 for cramer 22560. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramerlem2 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   · ,𝑖   / ,𝑖   𝑧,𝐵   𝑧,𝐷   𝑧,𝑁,𝑖   𝑧,𝑅   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐴(𝑧,𝑖)   / (𝑧)   · (𝑧)

Proof of Theorem cramerlem2
StepHypRef Expression
1 simpll1 1213 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑅 ∈ CRing)
2 simpll2 1214 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝑋𝐵𝑌𝑉))
3 simpll3 1215 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝐷𝑋) ∈ (Unit‘𝑅))
4 simplr 768 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑧𝑉)
5 simpr 484 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝑋 · 𝑧) = 𝑌)
6 cramer.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
7 cramer.b . . . . 5 𝐵 = (Base‘𝐴)
8 cramer.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
9 cramer.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
10 cramer.x . . . . 5 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
11 cramer.q . . . . 5 / = (/r𝑅)
126, 7, 8, 9, 10, 11cramerlem1 22556 . . . 4 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑧𝑉 ∧ (𝑋 · 𝑧) = 𝑌)) → 𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
131, 2, 3, 4, 5, 12syl113anc 1384 . . 3 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
1413ex 412 . 2 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) → ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
1514ralrimiva 3121 1 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cop 4579  cmpt 5169  cfv 6476  (class class class)co 7340  m cmap 8744  Basecbs 17107  CRingccrg 20106  Unitcui 20227  /rcdvr 20272   Mat cmat 22276   maVecMul cmvmul 22409   matRepV cmatrepV 22426   maDet cmdat 22453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662  ax-cnex 11053  ax-resscn 11054  ax-1cn 11055  ax-icn 11056  ax-addcl 11057  ax-addrcl 11058  ax-mulcl 11059  ax-mulrcl 11060  ax-mulcom 11061  ax-addass 11062  ax-mulass 11063  ax-distr 11064  ax-i2m1 11065  ax-1ne0 11066  ax-1rid 11067  ax-rnegex 11068  ax-rrecex 11069  ax-cnre 11070  ax-pre-lttri 11071  ax-pre-lttrn 11072  ax-pre-ltadd 11073  ax-pre-mulgt0 11074  ax-addf 11076  ax-mulf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4895  df-iun 4940  df-iin 4941  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-se 5567  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7297  df-ov 7343  df-oprab 7344  df-mpo 7345  df-of 7604  df-om 7791  df-1st 7915  df-2nd 7916  df-supp 8085  df-tpos 8150  df-frecs 8205  df-wrecs 8236  df-recs 8285  df-rdg 8323  df-1o 8379  df-2o 8380  df-er 8616  df-map 8746  df-pm 8747  df-ixp 8816  df-en 8864  df-dom 8865  df-sdom 8866  df-fin 8867  df-fsupp 9240  df-sup 9320  df-oi 9390  df-card 9823  df-pnf 11139  df-mnf 11140  df-xr 11141  df-ltxr 11142  df-le 11143  df-sub 11337  df-neg 11338  df-div 11766  df-nn 12117  df-2 12179  df-3 12180  df-4 12181  df-5 12182  df-6 12183  df-7 12184  df-8 12185  df-9 12186  df-n0 12373  df-xnn0 12446  df-z 12460  df-dec 12580  df-uz 12724  df-rp 12882  df-fz 13399  df-fzo 13546  df-seq 13897  df-exp 13957  df-hash 14226  df-word 14409  df-lsw 14458  df-concat 14466  df-s1 14491  df-substr 14536  df-pfx 14566  df-splice 14644  df-reverse 14653  df-s2 14742  df-struct 17045  df-sets 17062  df-slot 17080  df-ndx 17092  df-base 17108  df-ress 17129  df-plusg 17161  df-mulr 17162  df-starv 17163  df-sca 17164  df-vsca 17165  df-ip 17166  df-tset 17167  df-ple 17168  df-ds 17170  df-unif 17171  df-hom 17172  df-cco 17173  df-0g 17332  df-gsum 17333  df-prds 17338  df-pws 17340  df-mre 17475  df-mrc 17476  df-acs 17478  df-mgm 18501  df-sgrp 18580  df-mnd 18596  df-mhm 18644  df-submnd 18645  df-efmnd 18730  df-grp 18802  df-minusg 18803  df-sbg 18804  df-mulg 18934  df-subg 18989  df-ghm 19079  df-gim 19125  df-cntz 19183  df-oppg 19212  df-symg 19236  df-pmtr 19308  df-psgn 19357  df-evpm 19358  df-cmn 19648  df-abl 19649  df-mgp 20013  df-rng 20025  df-ur 20054  df-srg 20059  df-ring 20107  df-cring 20108  df-oppr 20209  df-dvdsr 20229  df-unit 20230  df-invr 20260  df-dvr 20273  df-rhm 20344  df-subrng 20415  df-subrg 20439  df-drng 20600  df-lmod 20749  df-lss 20819  df-sra 21061  df-rgmod 21062  df-cnfld 21246  df-zring 21338  df-zrh 21394  df-dsmm 21623  df-frlm 21638  df-mamu 22260  df-mat 22277  df-mvmul 22410  df-marrep 22427  df-marepv 22428  df-subma 22446  df-mdet 22454  df-minmar1 22504
This theorem is referenced by:  cramerlem3  22558
  Copyright terms: Public domain W3C validator