MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerlem2 Structured version   Visualization version   GIF version

Theorem cramerlem2 22581
Description: Lemma 2 for cramer 22584. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramerlem2 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   · ,𝑖   / ,𝑖   𝑧,𝐵   𝑧,𝐷   𝑧,𝑁,𝑖   𝑧,𝑅   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐴(𝑧,𝑖)   / (𝑧)   · (𝑧)

Proof of Theorem cramerlem2
StepHypRef Expression
1 simpll1 1213 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑅 ∈ CRing)
2 simpll2 1214 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝑋𝐵𝑌𝑉))
3 simpll3 1215 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝐷𝑋) ∈ (Unit‘𝑅))
4 simplr 768 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑧𝑉)
5 simpr 484 . . . 4 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → (𝑋 · 𝑧) = 𝑌)
6 cramer.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
7 cramer.b . . . . 5 𝐵 = (Base‘𝐴)
8 cramer.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
9 cramer.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
10 cramer.x . . . . 5 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
11 cramer.q . . . . 5 / = (/r𝑅)
126, 7, 8, 9, 10, 11cramerlem1 22580 . . . 4 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑧𝑉 ∧ (𝑋 · 𝑧) = 𝑌)) → 𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
131, 2, 3, 4, 5, 12syl113anc 1384 . . 3 ((((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) ∧ (𝑋 · 𝑧) = 𝑌) → 𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
1413ex 412 . 2 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧𝑉) → ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
1514ralrimiva 3126 1 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cop 4597  cmpt 5190  cfv 6513  (class class class)co 7389  m cmap 8801  Basecbs 17185  CRingccrg 20149  Unitcui 20270  /rcdvr 20315   Mat cmat 22300   maVecMul cmvmul 22433   matRepV cmatrepV 22450   maDet cmdat 22477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-seq 13973  df-exp 14033  df-hash 14302  df-word 14485  df-lsw 14534  df-concat 14542  df-s1 14567  df-substr 14612  df-pfx 14642  df-splice 14721  df-reverse 14730  df-s2 14820  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-efmnd 18802  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-gim 19197  df-cntz 19255  df-oppg 19284  df-symg 19306  df-pmtr 19378  df-psgn 19427  df-evpm 19428  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-srg 20102  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-rhm 20387  df-subrng 20461  df-subrg 20485  df-drng 20646  df-lmod 20774  df-lss 20844  df-sra 21086  df-rgmod 21087  df-cnfld 21271  df-zring 21363  df-zrh 21419  df-dsmm 21647  df-frlm 21662  df-mamu 22284  df-mat 22301  df-mvmul 22434  df-marrep 22451  df-marepv 22452  df-subma 22470  df-mdet 22478  df-minmar1 22528
This theorem is referenced by:  cramerlem3  22582
  Copyright terms: Public domain W3C validator