MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem18 Structured version   Visualization version   GIF version

Theorem pythagtriplem18 16159
Description: Lemma for pythagtrip 16161. Wrap the previous 𝑀 and 𝑁 up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝐵,𝑚,𝑛   𝐶,𝑚,𝑛

Proof of Theorem pythagtriplem18
StepHypRef Expression
1 eqid 2798 . . 3 (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
21pythagtriplem13 16154 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ)
3 eqid 2798 . . 3 (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
43pythagtriplem11 16152 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ)
53, 1pythagtriplem15 16156 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
63, 1pythagtriplem16 16157 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
73, 1pythagtriplem17 16158 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
8 oveq1 7142 . . . . . 6 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝑛↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))
98oveq2d 7151 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) − (𝑛↑2)) = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
109eqeq2d 2809 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐴 = ((𝑚↑2) − (𝑛↑2)) ↔ 𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
11 oveq2 7143 . . . . . 6 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝑚 · 𝑛) = (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
1211oveq2d 7151 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (2 · (𝑚 · 𝑛)) = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
1312eqeq2d 2809 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐵 = (2 · (𝑚 · 𝑛)) ↔ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))))
148oveq2d 7151 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) + (𝑛↑2)) = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
1514eqeq2d 2809 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐶 = ((𝑚↑2) + (𝑛↑2)) ↔ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
1610, 13, 153anbi123d 1433 . . 3 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))) ↔ (𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))))
17 oveq1 7142 . . . . . 6 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝑚↑2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2))
1817oveq1d 7150 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
1918eqeq2d 2809 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ↔ 𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
20 oveq1 7142 . . . . . 6 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
2120oveq2d 7151 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
2221eqeq2d 2809 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ↔ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))))
2317oveq1d 7150 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
2423eqeq2d 2809 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ↔ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
2519, 22, 243anbi123d 1433 . . 3 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))) ↔ (𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))))
2616, 25rspc2ev 3583 . 2 (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ ∧ (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ ∧ (𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
272, 4, 5, 6, 7, 26syl113anc 1379 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  cexp 13425  csqrt 14584  cdvds 15599   gcd cgcd 15833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006
This theorem is referenced by:  pythagtriplem19  16160
  Copyright terms: Public domain W3C validator