MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem18 Structured version   Visualization version   GIF version

Theorem pythagtriplem18 16779
Description: Lemma for pythagtrip 16781. Wrap the previous 𝑀 and 𝑁 up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝐵,𝑚,𝑛   𝐶,𝑚,𝑛

Proof of Theorem pythagtriplem18
StepHypRef Expression
1 eqid 2729 . . 3 (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
21pythagtriplem13 16774 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ)
3 eqid 2729 . . 3 (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
43pythagtriplem11 16772 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ)
53, 1pythagtriplem15 16776 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
63, 1pythagtriplem16 16777 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
73, 1pythagtriplem17 16778 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
8 oveq1 7376 . . . . . 6 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝑛↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))
98oveq2d 7385 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) − (𝑛↑2)) = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
109eqeq2d 2740 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐴 = ((𝑚↑2) − (𝑛↑2)) ↔ 𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
11 oveq2 7377 . . . . . 6 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝑚 · 𝑛) = (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
1211oveq2d 7385 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (2 · (𝑚 · 𝑛)) = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
1312eqeq2d 2740 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐵 = (2 · (𝑚 · 𝑛)) ↔ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))))
148oveq2d 7385 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) + (𝑛↑2)) = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
1514eqeq2d 2740 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐶 = ((𝑚↑2) + (𝑛↑2)) ↔ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
1610, 13, 153anbi123d 1438 . . 3 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))) ↔ (𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))))
17 oveq1 7376 . . . . . 6 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝑚↑2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2))
1817oveq1d 7384 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
1918eqeq2d 2740 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ↔ 𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
20 oveq1 7376 . . . . . 6 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
2120oveq2d 7385 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
2221eqeq2d 2740 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ↔ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))))
2317oveq1d 7384 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
2423eqeq2d 2740 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ↔ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
2519, 22, 243anbi123d 1438 . . 3 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))) ↔ (𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))))
2616, 25rspc2ev 3598 . 2 (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ ∧ (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ ∧ (𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
272, 4, 5, 6, 7, 26syl113anc 1384 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  cexp 14002  csqrt 15175  cdvds 16198   gcd cgcd 16440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618
This theorem is referenced by:  pythagtriplem19  16780
  Copyright terms: Public domain W3C validator