MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem18 Structured version   Visualization version   GIF version

Theorem pythagtriplem18 16800
Description: Lemma for pythagtrip 16802. Wrap the previous ๐‘€ and ๐‘ up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem18 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• (๐ด = ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)) โˆง ๐ต = (2 ยท (๐‘š ยท ๐‘›)) โˆง ๐ถ = ((๐‘šโ†‘2) + (๐‘›โ†‘2))))
Distinct variable groups:   ๐ด,๐‘š,๐‘›   ๐ต,๐‘š,๐‘›   ๐ถ,๐‘š,๐‘›

Proof of Theorem pythagtriplem18
StepHypRef Expression
1 eqid 2725 . . 3 (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
21pythagtriplem13 16795 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โˆˆ โ„•)
3 eqid 2725 . . 3 (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
43pythagtriplem11 16793 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โˆˆ โ„•)
53, 1pythagtriplem15 16797 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ด = (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)))
63, 1pythagtriplem16 16798 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ต = (2 ยท ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2))))
73, 1pythagtriplem17 16799 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ถ = (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)))
8 oveq1 7424 . . . . . 6 (๐‘› = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (๐‘›โ†‘2) = ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2))
98oveq2d 7433 . . . . 5 (๐‘› = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)) = ((๐‘šโ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)))
109eqeq2d 2736 . . . 4 (๐‘› = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (๐ด = ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)) โ†” ๐ด = ((๐‘šโ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2))))
11 oveq2 7425 . . . . . 6 (๐‘› = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (๐‘š ยท ๐‘›) = (๐‘š ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)))
1211oveq2d 7433 . . . . 5 (๐‘› = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (2 ยท (๐‘š ยท ๐‘›)) = (2 ยท (๐‘š ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2))))
1312eqeq2d 2736 . . . 4 (๐‘› = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (๐ต = (2 ยท (๐‘š ยท ๐‘›)) โ†” ๐ต = (2 ยท (๐‘š ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)))))
148oveq2d 7433 . . . . 5 (๐‘› = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ ((๐‘šโ†‘2) + (๐‘›โ†‘2)) = ((๐‘šโ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)))
1514eqeq2d 2736 . . . 4 (๐‘› = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (๐ถ = ((๐‘šโ†‘2) + (๐‘›โ†‘2)) โ†” ๐ถ = ((๐‘šโ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2))))
1610, 13, 153anbi123d 1432 . . 3 (๐‘› = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ ((๐ด = ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)) โˆง ๐ต = (2 ยท (๐‘š ยท ๐‘›)) โˆง ๐ถ = ((๐‘šโ†‘2) + (๐‘›โ†‘2))) โ†” (๐ด = ((๐‘šโ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)) โˆง ๐ต = (2 ยท (๐‘š ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2))) โˆง ๐ถ = ((๐‘šโ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)))))
17 oveq1 7424 . . . . . 6 (๐‘š = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (๐‘šโ†‘2) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2))
1817oveq1d 7432 . . . . 5 (๐‘š = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ ((๐‘šโ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)) = (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)))
1918eqeq2d 2736 . . . 4 (๐‘š = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (๐ด = ((๐‘šโ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)) โ†” ๐ด = (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2))))
20 oveq1 7424 . . . . . 6 (๐‘š = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (๐‘š ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)))
2120oveq2d 7433 . . . . 5 (๐‘š = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (2 ยท (๐‘š ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2))) = (2 ยท ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2))))
2221eqeq2d 2736 . . . 4 (๐‘š = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (๐ต = (2 ยท (๐‘š ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2))) โ†” ๐ต = (2 ยท ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)))))
2317oveq1d 7432 . . . . 5 (๐‘š = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ ((๐‘šโ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)) = (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)))
2423eqeq2d 2736 . . . 4 (๐‘š = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ (๐ถ = ((๐‘šโ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)) โ†” ๐ถ = (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2))))
2519, 22, 243anbi123d 1432 . . 3 (๐‘š = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โ†’ ((๐ด = ((๐‘šโ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)) โˆง ๐ต = (2 ยท (๐‘š ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2))) โˆง ๐ถ = ((๐‘šโ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2))) โ†” (๐ด = (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)) โˆง ๐ต = (2 ยท ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2))) โˆง ๐ถ = (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)))))
2616, 25rspc2ev 3620 . 2 (((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โˆˆ โ„• โˆง (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) โˆˆ โ„• โˆง (๐ด = (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) โˆ’ ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)) โˆง ๐ต = (2 ยท ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2))) โˆง ๐ถ = (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) + ((((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)))) โ†’ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• (๐ด = ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)) โˆง ๐ต = (2 ยท (๐‘š ยท ๐‘›)) โˆง ๐ถ = ((๐‘šโ†‘2) + (๐‘›โ†‘2))))
272, 4, 5, 6, 7, 26syl113anc 1379 1 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• (๐ด = ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)) โˆง ๐ต = (2 ยท (๐‘š ยท ๐‘›)) โˆง ๐ถ = ((๐‘šโ†‘2) + (๐‘›โ†‘2))))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 394   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098  โˆƒwrex 3060   class class class wbr 5148  โ€˜cfv 6547  (class class class)co 7417  1c1 11139   + caddc 11141   ยท cmul 11143   โˆ’ cmin 11474   / cdiv 11901  โ„•cn 12242  2c2 12297  โ†‘cexp 14058  โˆšcsqrt 15212   โˆฅ cdvds 16230   gcd cgcd 16468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fl 13789  df-mod 13867  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-dvds 16231  df-gcd 16469  df-prm 16642
This theorem is referenced by:  pythagtriplem19  16801
  Copyright terms: Public domain W3C validator