MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem18 Structured version   Visualization version   GIF version

Theorem pythagtriplem18 16704
Description: Lemma for pythagtrip 16706. Wrap the previous 𝑀 and 𝑁 up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝐵,𝑚,𝑛   𝐶,𝑚,𝑛

Proof of Theorem pythagtriplem18
StepHypRef Expression
1 eqid 2736 . . 3 (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
21pythagtriplem13 16699 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ)
3 eqid 2736 . . 3 (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
43pythagtriplem11 16697 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ)
53, 1pythagtriplem15 16701 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
63, 1pythagtriplem16 16702 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
73, 1pythagtriplem17 16703 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
8 oveq1 7364 . . . . . 6 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝑛↑2) = ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))
98oveq2d 7373 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) − (𝑛↑2)) = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
109eqeq2d 2747 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐴 = ((𝑚↑2) − (𝑛↑2)) ↔ 𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
11 oveq2 7365 . . . . . 6 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝑚 · 𝑛) = (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
1211oveq2d 7373 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (2 · (𝑚 · 𝑛)) = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
1312eqeq2d 2747 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐵 = (2 · (𝑚 · 𝑛)) ↔ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))))
148oveq2d 7373 . . . . 5 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) + (𝑛↑2)) = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
1514eqeq2d 2747 . . . 4 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → (𝐶 = ((𝑚↑2) + (𝑛↑2)) ↔ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
1610, 13, 153anbi123d 1436 . . 3 (𝑛 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) → ((𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))) ↔ (𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))))
17 oveq1 7364 . . . . . 6 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝑚↑2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2))
1817oveq1d 7372 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
1918eqeq2d 2747 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ↔ 𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
20 oveq1 7364 . . . . . 6 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
2120oveq2d 7373 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))))
2221eqeq2d 2747 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ↔ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))))
2317oveq1d 7372 . . . . 5 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))
2423eqeq2d 2747 . . . 4 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → (𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ↔ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))))
2519, 22, 243anbi123d 1436 . . 3 (𝑚 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) → ((𝐴 = ((𝑚↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · (𝑚 · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = ((𝑚↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2))) ↔ (𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))))
2616, 25rspc2ev 3592 . 2 (((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ ∧ (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ ∧ (𝐴 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) − ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)) ∧ 𝐵 = (2 · ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))) ∧ 𝐶 = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)↑2) + ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)↑2)))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
272, 4, 5, 6, 7, 26syl113anc 1382 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  cexp 13967  csqrt 15118  cdvds 16136   gcd cgcd 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548
This theorem is referenced by:  pythagtriplem19  16705
  Copyright terms: Public domain W3C validator