Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zmodid2 | Structured version Visualization version GIF version |
Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
zmodid2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12253 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | nnrp 12670 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
3 | modid2 13546 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
5 | nnz 12272 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
6 | 0z 12260 | . . . . . 6 ⊢ 0 ∈ ℤ | |
7 | elfzm11 13256 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) | |
8 | 6, 7 | mpan 686 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
9 | 3anass 1093 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) | |
10 | 8, 9 | bitrdi 286 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)))) |
11 | 5, 10 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)))) |
12 | ibar 528 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((0 ≤ 𝑀 ∧ 𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)))) | |
13 | 12 | bicomd 222 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)) ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
14 | 11, 13 | sylan9bbr 510 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
15 | 4, 14 | bitr4d 281 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 < clt 10940 ≤ cle 10941 − cmin 11135 ℕcn 11903 ℤcz 12249 ℝ+crp 12659 ...cfz 13168 mod cmo 13517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fl 13440 df-mod 13518 |
This theorem is referenced by: zmodidfzo 13548 crctcshwlkn0lem4 28079 |
Copyright terms: Public domain | W3C validator |