MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmodid2 Structured version   Visualization version   GIF version

Theorem zmodid2 13759
Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
zmodid2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀𝑀 ∈ (0...(𝑁 − 1))))

Proof of Theorem zmodid2
StepHypRef Expression
1 zre 12462 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 nnrp 12881 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3 modid2 13758 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
41, 2, 3syl2an 597 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
5 nnz 12479 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6 0z 12469 . . . . . 6 0 ∈ ℤ
7 elfzm11 13467 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < 𝑁)))
86, 7mpan 689 . . . . 5 (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < 𝑁)))
9 3anass 1096 . . . . 5 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁)))
108, 9bitrdi 287 . . . 4 (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁))))
115, 10syl 17 . . 3 (𝑁 ∈ ℕ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁))))
12 ibar 530 . . . 4 (𝑀 ∈ ℤ → ((0 ≤ 𝑀𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁))))
1312bicomd 222 . . 3 (𝑀 ∈ ℤ → ((𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁)) ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
1411, 13sylan9bbr 512 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
154, 14bitr4d 282 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀𝑀 ∈ (0...(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5104  (class class class)co 7352  cr 11009  0cc0 11010  1c1 11011   < clt 11148  cle 11149  cmin 11344  cn 12112  cz 12458  +crp 12870  ...cfz 13379   mod cmo 13729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087  ax-pre-sup 11088
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-2nd 7915  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-er 8607  df-en 8843  df-dom 8844  df-sdom 8845  df-sup 9337  df-inf 9338  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-div 11772  df-nn 12113  df-n0 12373  df-z 12459  df-uz 12723  df-rp 12871  df-fz 13380  df-fl 13652  df-mod 13730
This theorem is referenced by:  zmodidfzo  13760  crctcshwlkn0lem4  28587
  Copyright terms: Public domain W3C validator