| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn6 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.) |
| Ref | Expression |
|---|---|
| cdlemn8.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemn8.l | ⊢ ≤ = (le‘𝐾) |
| cdlemn8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemn8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemn8.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| cdlemn8.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| cdlemn8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemn8.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| cdlemn8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| cdlemn8.s | ⊢ + = (+g‘𝑈) |
| cdlemn8.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
| Ref | Expression |
|---|---|
| cdlemn6 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp3l 1202 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑠 ∈ 𝐸) | |
| 3 | cdlemn8.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 4 | cdlemn8.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdlemn8.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdlemn8.p | . . . . . . 7 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 7 | 3, 4, 5, 6 | lhpocnel2 40066 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 9 | simp2l 1200 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
| 10 | cdlemn8.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 11 | cdlemn8.f | . . . . . 6 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | |
| 12 | 3, 4, 5, 10, 11 | ltrniotacl 40626 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
| 13 | 1, 8, 9, 12 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝐹 ∈ 𝑇) |
| 14 | cdlemn8.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 15 | 5, 10, 14 | tendocl 40814 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑠‘𝐹) ∈ 𝑇) |
| 16 | 1, 2, 13, 15 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠‘𝐹) ∈ 𝑇) |
| 17 | simp3r 1203 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑔 ∈ 𝑇) | |
| 18 | cdlemn8.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 19 | cdlemn8.o | . . . . 5 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 20 | 18, 5, 10, 14, 19 | tendo0cl 40837 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| 21 | 1, 20 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑂 ∈ 𝐸) |
| 22 | cdlemn8.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 23 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 24 | cdlemn8.s | . . . 4 ⊢ + = (+g‘𝑈) | |
| 25 | eqid 2731 | . . . 4 ⊢ (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈)) | |
| 26 | 5, 10, 14, 22, 23, 24, 25 | dvhopvadd 41140 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑠‘𝐹) ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑂 ∈ 𝐸)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉) |
| 27 | 1, 16, 2, 17, 21, 26 | syl122anc 1381 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉) |
| 28 | eqid 2731 | . . . . . . 7 ⊢ (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ)))) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ)))) | |
| 29 | 5, 10, 14, 22, 23, 28, 25 | dvhfplusr 41131 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘(Scalar‘𝑈)) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))) |
| 30 | 1, 29 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (+g‘(Scalar‘𝑈)) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))) |
| 31 | 30 | oveqd 7363 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(+g‘(Scalar‘𝑈))𝑂) = (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂)) |
| 32 | 18, 5, 10, 14, 19, 28 | tendo0plr 40839 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂) = 𝑠) |
| 33 | 1, 2, 32 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂) = 𝑠) |
| 34 | 31, 33 | eqtrd 2766 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(+g‘(Scalar‘𝑈))𝑂) = 𝑠) |
| 35 | 34 | opeq2d 4829 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉 = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
| 36 | 27, 35 | eqtrd 2766 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 ↦ cmpt 5170 I cid 5508 ↾ cres 5616 ∘ ccom 5618 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 lecple 17168 occoc 17169 Atomscatm 39310 HLchlt 39397 LHypclh 40031 LTrncltrn 40148 TEndoctendo 40799 DVecHcdvh 41125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 39000 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39223 df-ol 39225 df-oml 39226 df-covers 39313 df-ats 39314 df-atl 39345 df-cvlat 39369 df-hlat 39398 df-llines 39545 df-lplanes 39546 df-lvols 39547 df-lines 39548 df-psubsp 39550 df-pmap 39551 df-padd 39843 df-lhyp 40035 df-laut 40036 df-ldil 40151 df-ltrn 40152 df-trl 40206 df-tendo 40802 df-edring 40804 df-dvech 41126 |
| This theorem is referenced by: cdlemn7 41250 dihordlem6 41260 |
| Copyright terms: Public domain | W3C validator |