![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn6 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.) |
Ref | Expression |
---|---|
cdlemn8.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemn8.l | ⊢ ≤ = (le‘𝐾) |
cdlemn8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemn8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemn8.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
cdlemn8.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
cdlemn8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemn8.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
cdlemn8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
cdlemn8.s | ⊢ + = (+g‘𝑈) |
cdlemn8.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
Ref | Expression |
---|---|
cdlemn6 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp3l 1200 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑠 ∈ 𝐸) | |
3 | cdlemn8.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
4 | cdlemn8.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdlemn8.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemn8.p | . . . . . . 7 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
7 | 3, 4, 5, 6 | lhpocnel2 40001 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
9 | simp2l 1198 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
10 | cdlemn8.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | cdlemn8.f | . . . . . 6 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | |
12 | 3, 4, 5, 10, 11 | ltrniotacl 40561 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
13 | 1, 8, 9, 12 | syl3anc 1370 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝐹 ∈ 𝑇) |
14 | cdlemn8.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
15 | 5, 10, 14 | tendocl 40749 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑠‘𝐹) ∈ 𝑇) |
16 | 1, 2, 13, 15 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠‘𝐹) ∈ 𝑇) |
17 | simp3r 1201 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑔 ∈ 𝑇) | |
18 | cdlemn8.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
19 | cdlemn8.o | . . . . 5 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
20 | 18, 5, 10, 14, 19 | tendo0cl 40772 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
21 | 1, 20 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑂 ∈ 𝐸) |
22 | cdlemn8.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
23 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
24 | cdlemn8.s | . . . 4 ⊢ + = (+g‘𝑈) | |
25 | eqid 2734 | . . . 4 ⊢ (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈)) | |
26 | 5, 10, 14, 22, 23, 24, 25 | dvhopvadd 41075 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑠‘𝐹) ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑂 ∈ 𝐸)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉) |
27 | 1, 16, 2, 17, 21, 26 | syl122anc 1378 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉) |
28 | eqid 2734 | . . . . . . 7 ⊢ (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ)))) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ)))) | |
29 | 5, 10, 14, 22, 23, 28, 25 | dvhfplusr 41066 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘(Scalar‘𝑈)) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))) |
30 | 1, 29 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (+g‘(Scalar‘𝑈)) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))) |
31 | 30 | oveqd 7447 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(+g‘(Scalar‘𝑈))𝑂) = (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂)) |
32 | 18, 5, 10, 14, 19, 28 | tendo0plr 40774 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂) = 𝑠) |
33 | 1, 2, 32 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂) = 𝑠) |
34 | 31, 33 | eqtrd 2774 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(+g‘(Scalar‘𝑈))𝑂) = 𝑠) |
35 | 34 | opeq2d 4884 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉 = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
36 | 27, 35 | eqtrd 2774 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 〈cop 4636 class class class wbr 5147 ↦ cmpt 5230 I cid 5581 ↾ cres 5690 ∘ ccom 5692 ‘cfv 6562 ℩crio 7386 (class class class)co 7430 ∈ cmpo 7432 Basecbs 17244 +gcplusg 17297 Scalarcsca 17300 lecple 17304 occoc 17305 Atomscatm 39244 HLchlt 39331 LHypclh 39966 LTrncltrn 40083 TEndoctendo 40734 DVecHcdvh 41060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-riotaBAD 38934 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-undef 8296 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-proset 18351 df-poset 18370 df-plt 18387 df-lub 18403 df-glb 18404 df-join 18405 df-meet 18406 df-p0 18482 df-p1 18483 df-lat 18489 df-clat 18556 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-llines 39480 df-lplanes 39481 df-lvols 39482 df-lines 39483 df-psubsp 39485 df-pmap 39486 df-padd 39778 df-lhyp 39970 df-laut 39971 df-ldil 40086 df-ltrn 40087 df-trl 40141 df-tendo 40737 df-edring 40739 df-dvech 41061 |
This theorem is referenced by: cdlemn7 41185 dihordlem6 41195 |
Copyright terms: Public domain | W3C validator |