| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn6 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.) |
| Ref | Expression |
|---|---|
| cdlemn8.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemn8.l | ⊢ ≤ = (le‘𝐾) |
| cdlemn8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemn8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemn8.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| cdlemn8.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| cdlemn8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemn8.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| cdlemn8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| cdlemn8.s | ⊢ + = (+g‘𝑈) |
| cdlemn8.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
| Ref | Expression |
|---|---|
| cdlemn6 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp3l 1202 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑠 ∈ 𝐸) | |
| 3 | cdlemn8.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 4 | cdlemn8.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdlemn8.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdlemn8.p | . . . . . . 7 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 7 | 3, 4, 5, 6 | lhpocnel2 39986 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 9 | simp2l 1200 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
| 10 | cdlemn8.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 11 | cdlemn8.f | . . . . . 6 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | |
| 12 | 3, 4, 5, 10, 11 | ltrniotacl 40546 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
| 13 | 1, 8, 9, 12 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝐹 ∈ 𝑇) |
| 14 | cdlemn8.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 15 | 5, 10, 14 | tendocl 40734 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑠‘𝐹) ∈ 𝑇) |
| 16 | 1, 2, 13, 15 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠‘𝐹) ∈ 𝑇) |
| 17 | simp3r 1203 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑔 ∈ 𝑇) | |
| 18 | cdlemn8.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 19 | cdlemn8.o | . . . . 5 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 20 | 18, 5, 10, 14, 19 | tendo0cl 40757 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| 21 | 1, 20 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑂 ∈ 𝐸) |
| 22 | cdlemn8.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 23 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 24 | cdlemn8.s | . . . 4 ⊢ + = (+g‘𝑈) | |
| 25 | eqid 2729 | . . . 4 ⊢ (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈)) | |
| 26 | 5, 10, 14, 22, 23, 24, 25 | dvhopvadd 41060 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑠‘𝐹) ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑂 ∈ 𝐸)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉) |
| 27 | 1, 16, 2, 17, 21, 26 | syl122anc 1381 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉) |
| 28 | eqid 2729 | . . . . . . 7 ⊢ (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ)))) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ)))) | |
| 29 | 5, 10, 14, 22, 23, 28, 25 | dvhfplusr 41051 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘(Scalar‘𝑈)) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))) |
| 30 | 1, 29 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (+g‘(Scalar‘𝑈)) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))) |
| 31 | 30 | oveqd 7386 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(+g‘(Scalar‘𝑈))𝑂) = (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂)) |
| 32 | 18, 5, 10, 14, 19, 28 | tendo0plr 40759 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂) = 𝑠) |
| 33 | 1, 2, 32 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂) = 𝑠) |
| 34 | 31, 33 | eqtrd 2764 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(+g‘(Scalar‘𝑈))𝑂) = 𝑠) |
| 35 | 34 | opeq2d 4840 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉 = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
| 36 | 27, 35 | eqtrd 2764 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 ↦ cmpt 5183 I cid 5525 ↾ cres 5633 ∘ ccom 5635 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 ∈ cmpo 7371 Basecbs 17155 +gcplusg 17196 Scalarcsca 17199 lecple 17203 occoc 17204 Atomscatm 39229 HLchlt 39316 LHypclh 39951 LTrncltrn 40068 TEndoctendo 40719 DVecHcdvh 41045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 df-tendo 40722 df-edring 40724 df-dvech 41046 |
| This theorem is referenced by: cdlemn7 41170 dihordlem6 41180 |
| Copyright terms: Public domain | W3C validator |