| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn6 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.) |
| Ref | Expression |
|---|---|
| cdlemn8.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemn8.l | ⊢ ≤ = (le‘𝐾) |
| cdlemn8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemn8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemn8.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| cdlemn8.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| cdlemn8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemn8.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| cdlemn8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| cdlemn8.s | ⊢ + = (+g‘𝑈) |
| cdlemn8.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
| Ref | Expression |
|---|---|
| cdlemn6 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp3l 1202 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑠 ∈ 𝐸) | |
| 3 | cdlemn8.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 4 | cdlemn8.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdlemn8.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdlemn8.p | . . . . . . 7 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 7 | 3, 4, 5, 6 | lhpocnel2 39984 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 9 | simp2l 1200 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
| 10 | cdlemn8.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 11 | cdlemn8.f | . . . . . 6 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | |
| 12 | 3, 4, 5, 10, 11 | ltrniotacl 40544 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
| 13 | 1, 8, 9, 12 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝐹 ∈ 𝑇) |
| 14 | cdlemn8.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 15 | 5, 10, 14 | tendocl 40732 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑠‘𝐹) ∈ 𝑇) |
| 16 | 1, 2, 13, 15 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠‘𝐹) ∈ 𝑇) |
| 17 | simp3r 1203 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑔 ∈ 𝑇) | |
| 18 | cdlemn8.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 19 | cdlemn8.o | . . . . 5 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 20 | 18, 5, 10, 14, 19 | tendo0cl 40755 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| 21 | 1, 20 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 𝑂 ∈ 𝐸) |
| 22 | cdlemn8.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 23 | eqid 2735 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 24 | cdlemn8.s | . . . 4 ⊢ + = (+g‘𝑈) | |
| 25 | eqid 2735 | . . . 4 ⊢ (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈)) | |
| 26 | 5, 10, 14, 22, 23, 24, 25 | dvhopvadd 41058 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑠‘𝐹) ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑂 ∈ 𝐸)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉) |
| 27 | 1, 16, 2, 17, 21, 26 | syl122anc 1381 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉) |
| 28 | eqid 2735 | . . . . . . 7 ⊢ (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ)))) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ)))) | |
| 29 | 5, 10, 14, 22, 23, 28, 25 | dvhfplusr 41049 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘(Scalar‘𝑈)) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))) |
| 30 | 1, 29 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (+g‘(Scalar‘𝑈)) = (𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))) |
| 31 | 30 | oveqd 7420 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(+g‘(Scalar‘𝑈))𝑂) = (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂)) |
| 32 | 18, 5, 10, 14, 19, 28 | tendo0plr 40757 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂) = 𝑠) |
| 33 | 1, 2, 32 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(𝑡 ∈ 𝐸, 𝑢 ∈ 𝐸 ↦ (ℎ ∈ 𝑇 ↦ ((𝑡‘ℎ) ∘ (𝑢‘ℎ))))𝑂) = 𝑠) |
| 34 | 31, 33 | eqtrd 2770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠(+g‘(Scalar‘𝑈))𝑂) = 𝑠) |
| 35 | 34 | opeq2d 4856 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → 〈((𝑠‘𝐹) ∘ 𝑔), (𝑠(+g‘(Scalar‘𝑈))𝑂)〉 = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
| 36 | 27, 35 | eqtrd 2770 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐹), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐹) ∘ 𝑔), 𝑠〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 ↦ cmpt 5201 I cid 5547 ↾ cres 5656 ∘ ccom 5658 ‘cfv 6530 ℩crio 7359 (class class class)co 7403 ∈ cmpo 7405 Basecbs 17226 +gcplusg 17269 Scalarcsca 17272 lecple 17276 occoc 17277 Atomscatm 39227 HLchlt 39314 LHypclh 39949 LTrncltrn 40066 TEndoctendo 40717 DVecHcdvh 41043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-riotaBAD 38917 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-undef 8270 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-p1 18434 df-lat 18440 df-clat 18507 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-llines 39463 df-lplanes 39464 df-lvols 39465 df-lines 39466 df-psubsp 39468 df-pmap 39469 df-padd 39761 df-lhyp 39953 df-laut 39954 df-ldil 40069 df-ltrn 40070 df-trl 40124 df-tendo 40720 df-edring 40722 df-dvech 41044 |
| This theorem is referenced by: cdlemn7 41168 dihordlem6 41178 |
| Copyright terms: Public domain | W3C validator |