Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
class class class wbr 5148 (class class class)co 7408
ℝcr 11108 1c1 11110
< clt 11247 −
cmin 11443 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 |
This theorem is referenced by: suprzcl
12641 fzsuc2
13558 fzm1
13580 m1modnnsub1
13881 cshwidxm1
14756 fsumm1
15696 isumsplit
15785 climcndslem1
15794 bitsfzolem
16374 fldivp1
16829 4sqlem12
16888 ram0
16954 sylow1lem1
19465 dgreq0
25778 atanlogsublem
26417 birthdaylem3
26455 wilthlem1
26569 ftalem5
26578 basellem5
26586 lgsval2lem
26807 lgsqrlem2
26847 gausslemma2dlem0c
26858 lgsquadlem1
26880 lgsquadlem2
26881 pntrsumbnd2
27067 axlowdimlem16
28212 pthdlem1
29020 clwwlkel
29296 clwwlknonex2lem2
29358 xlt2addrd
31966 cycpmco2lem6
32285 cvmliftlem6
34276 cvmliftlem8
34278 cvmliftlem9
34279 cvmliftlem10
34280 bcprod
34703 iooelexlt
36238 poimirlem1
36484 poimirlem2
36485 poimirlem6
36489 poimirlem7
36490 poimirlem8
36491 poimirlem12
36495 poimirlem15
36498 poimirlem16
36499 poimirlem17
36500 poimirlem19
36502 poimirlem20
36503 poimirlem21
36504 poimirlem22
36505 poimirlem23
36506 poimirlem26
36509 mettrifi
36620 aks4d1p1
40936 sticksstones10
40966 sticksstones12a
40968 metakunt18
40997 metakunt20
40999 metakunt24
41003 irrapxlem1
41550 rmspecsqrtnq
41634 acongeq
41712 monoords
43997 fzisoeu
44000 fzdifsuc2
44010 infleinflem2
44071 unb2ltle
44115 limsupre3lem
44438 xlimxrre
44537 xlimmnfv
44540 iblspltprt
44679 itgspltprt
44685 stoweidlem11
44717 stoweidlem14
44720 fourierdlem11
44824 fourierdlem12
44825 fourierdlem15
44828 fourierdlem41
44854 fourierdlem48
44860 fourierdlem49
44861 fourierdlem50
44862 fourierdlem79
44891 ioorrnopnxrlem
45012 iundjiun
45166 lswn0
46102 bgoldbtbndlem4
46466 m1modmmod
47197 logbpw2m1
47243 |