Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
class class class wbr 5149 (class class class)co 7409
ℝcr 11109 1c1 11111
< clt 11248 −
cmin 11444 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 |
This theorem is referenced by: suprzcl
12642 fzsuc2
13559 fzm1
13581 m1modnnsub1
13882 cshwidxm1
14757 fsumm1
15697 isumsplit
15786 climcndslem1
15795 bitsfzolem
16375 fldivp1
16830 4sqlem12
16889 ram0
16955 sylow1lem1
19466 dgreq0
25779 atanlogsublem
26420 birthdaylem3
26458 wilthlem1
26572 ftalem5
26581 basellem5
26589 lgsval2lem
26810 lgsqrlem2
26850 gausslemma2dlem0c
26861 lgsquadlem1
26883 lgsquadlem2
26884 pntrsumbnd2
27070 axlowdimlem16
28215 pthdlem1
29023 clwwlkel
29299 clwwlknonex2lem2
29361 xlt2addrd
31971 cycpmco2lem6
32290 cvmliftlem6
34281 cvmliftlem8
34283 cvmliftlem9
34284 cvmliftlem10
34285 bcprod
34708 iooelexlt
36243 poimirlem1
36489 poimirlem2
36490 poimirlem6
36494 poimirlem7
36495 poimirlem8
36496 poimirlem12
36500 poimirlem15
36503 poimirlem16
36504 poimirlem17
36505 poimirlem19
36507 poimirlem20
36508 poimirlem21
36509 poimirlem22
36510 poimirlem23
36511 poimirlem26
36514 mettrifi
36625 aks4d1p1
40941 sticksstones10
40971 sticksstones12a
40973 metakunt18
41002 metakunt20
41004 metakunt24
41008 irrapxlem1
41560 rmspecsqrtnq
41644 acongeq
41722 monoords
44007 fzisoeu
44010 fzdifsuc2
44020 infleinflem2
44081 unb2ltle
44125 limsupre3lem
44448 xlimxrre
44547 xlimmnfv
44550 iblspltprt
44689 itgspltprt
44695 stoweidlem11
44727 stoweidlem14
44730 fourierdlem11
44834 fourierdlem12
44835 fourierdlem15
44838 fourierdlem41
44864 fourierdlem48
44870 fourierdlem49
44871 fourierdlem50
44872 fourierdlem79
44901 ioorrnopnxrlem
45022 iundjiun
45176 lswn0
46112 bgoldbtbndlem4
46476 m1modmmod
47207 logbpw2m1
47253 |