MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blss2 Structured version   Visualization version   GIF version

Theorem blss2 23910
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blss2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† (𝑄(ballβ€˜π·)𝑆))

Proof of Theorem blss2
StepHypRef Expression
1 simpl1 1192 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
2 simpl2 1193 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ 𝑃 ∈ 𝑋)
3 simpl3 1194 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ 𝑄 ∈ 𝑋)
4 simpr1 1195 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ 𝑅 ∈ ℝ)
54rexrd 11264 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ 𝑅 ∈ ℝ*)
6 simpr2 1196 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ 𝑆 ∈ ℝ)
76rexrd 11264 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ 𝑆 ∈ ℝ*)
86, 4resubcld 11642 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ (𝑆 βˆ’ 𝑅) ∈ ℝ)
9 simpr3 1197 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))
10 xmetlecl 23852 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ ((𝑆 βˆ’ 𝑅) ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ (𝑃𝐷𝑄) ∈ ℝ)
111, 2, 3, 8, 9, 10syl122anc 1380 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ (𝑃𝐷𝑄) ∈ ℝ)
12 rexsub 13212 . . . 4 ((𝑆 ∈ ℝ ∧ 𝑅 ∈ ℝ) β†’ (𝑆 +𝑒 -𝑒𝑅) = (𝑆 βˆ’ 𝑅))
136, 4, 12syl2anc 585 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ (𝑆 +𝑒 -𝑒𝑅) = (𝑆 βˆ’ 𝑅))
149, 13breqtrrd 5177 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ (𝑃𝐷𝑄) ≀ (𝑆 +𝑒 -𝑒𝑅))
151, 2, 3, 5, 7, 11, 14xblss2 23908 1 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† (𝑄(ballβ€˜π·)𝑆))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   βŠ† wss 3949   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  β„cr 11109   ≀ cle 11249   βˆ’ cmin 11444  -𝑒cxne 13089   +𝑒 cxad 13090  βˆžMetcxmet 20929  ballcbl 20931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-2 12275  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-psmet 20936  df-xmet 20937  df-bl 20939
This theorem is referenced by:  blhalf  23911  blss  23931  metdstri  24367  ssbnd  36656  totbndbnd  36657  heiborlem6  36684
  Copyright terms: Public domain W3C validator