Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > blss2 | Structured version Visualization version GIF version |
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
blss2 | ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → 𝐷 ∈ (∞Met‘𝑋)) | |
2 | simpl2 1191 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → 𝑃 ∈ 𝑋) | |
3 | simpl3 1192 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → 𝑄 ∈ 𝑋) | |
4 | simpr1 1193 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → 𝑅 ∈ ℝ) | |
5 | 4 | rexrd 11025 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → 𝑅 ∈ ℝ*) |
6 | simpr2 1194 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → 𝑆 ∈ ℝ) | |
7 | 6 | rexrd 11025 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → 𝑆 ∈ ℝ*) |
8 | 6, 4 | resubcld 11403 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑆 − 𝑅) ∈ ℝ) |
9 | simpr3 1195 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅)) | |
10 | xmetlecl 23499 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ ((𝑆 − 𝑅) ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃𝐷𝑄) ∈ ℝ) | |
11 | 1, 2, 3, 8, 9, 10 | syl122anc 1378 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃𝐷𝑄) ∈ ℝ) |
12 | rexsub 12967 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑆 +𝑒 -𝑒𝑅) = (𝑆 − 𝑅)) | |
13 | 6, 4, 12 | syl2anc 584 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑆 +𝑒 -𝑒𝑅) = (𝑆 − 𝑅)) |
14 | 9, 13 | breqtrrd 5102 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅)) |
15 | 1, 2, 3, 5, 7, 11, 14 | xblss2 23555 | 1 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 ≤ cle 11010 − cmin 11205 -𝑒cxne 12845 +𝑒 cxad 12846 ∞Metcxmet 20582 ballcbl 20584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-psmet 20589 df-xmet 20590 df-bl 20592 |
This theorem is referenced by: blhalf 23558 blss 23578 metdstri 24014 ssbnd 35946 totbndbnd 35947 heiborlem6 35974 |
Copyright terms: Public domain | W3C validator |