![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metge0 | Structured version Visualization version GIF version |
Description: The distance function of a metric space is nonnegative. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
metge0 | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metxmet 22615 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
2 | xmetge0 22625 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | |
3 | 1, 2 | syl3an1 1154 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1078 ∈ wcel 2079 class class class wbr 4956 ‘cfv 6217 (class class class)co 7007 0cc0 10372 ≤ cle 10511 ∞Metcxmet 20200 Metcmet 20201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-po 5354 df-so 5355 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-1st 7536 df-2nd 7537 df-er 8130 df-map 8249 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-2 11537 df-rp 12229 df-xneg 12346 df-xadd 12347 df-xmul 12348 df-xmet 20208 df-met 20209 |
This theorem is referenced by: rrxdstprj1 23683 minveclem3b 23702 minveclem3 23703 minveclem4 23706 minvecolem3 28332 minvecolem4 28336 lmclim2 34511 geomcau 34512 isbnd3 34540 isbnd3b 34541 totbndbnd 34545 prdsbnd 34549 bfplem2 34579 bfp 34580 rrnequiv 34591 rrntotbnd 34592 rrxsphere 44170 |
Copyright terms: Public domain | W3C validator |