ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsubcl GIF version

Theorem qsubcl 9772
Description: Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
qsubcl ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵) ∈ ℚ)

Proof of Theorem qsubcl
StepHypRef Expression
1 qcn 9768 . . 3 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2 qcn 9768 . . 3 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
3 negsub 8333 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
41, 2, 3syl2an 289 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + -𝐵) = (𝐴𝐵))
5 qnegcl 9770 . . 3 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
6 qaddcl 9769 . . 3 ((𝐴 ∈ ℚ ∧ -𝐵 ∈ ℚ) → (𝐴 + -𝐵) ∈ ℚ)
75, 6sylan2 286 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + -𝐵) ∈ ℚ)
84, 7eqeltrrd 2284 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  (class class class)co 5954  cc 7936   + caddc 7941  cmin 8256  -cneg 8257  cq 9753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-po 4348  df-iso 4349  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-n0 9309  df-z 9386  df-q 9754
This theorem is referenced by:  qrevaddcl  9778  irradd  9780  flqdiv  10479  modqcl  10484  m1modnnsub1  10528  q2submod  10543  modqsubdir  10551  modsumfzodifsn  10554  addmodlteq  10556  moddvds  12160  modprm0  12627  lgseisenlem1  15597
  Copyright terms: Public domain W3C validator