MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssscongptld Structured version   Visualization version   GIF version

Theorem ssscongptld 26782
Description: If two triangles have equal sides, one angle in one triangle has the same cosine as the corresponding angle in the other triangle. This is a partial form of the SSS congruence theorem.

This theorem is proven by using lawcos 26776 on both triangles to express one side in terms of the other two, and then equating these expressions and reducing this algebraically to get an equality of cosines of angles. (Contributed by David Moews, 28-Feb-2017.)

Hypotheses
Ref Expression
ssscongptld.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ssscongptld.1 (𝜑𝐴 ∈ ℂ)
ssscongptld.2 (𝜑𝐵 ∈ ℂ)
ssscongptld.3 (𝜑𝐶 ∈ ℂ)
ssscongptld.4 (𝜑𝐷 ∈ ℂ)
ssscongptld.5 (𝜑𝐸 ∈ ℂ)
ssscongptld.6 (𝜑𝐺 ∈ ℂ)
ssscongptld.7 (𝜑𝐴𝐵)
ssscongptld.8 (𝜑𝐵𝐶)
ssscongptld.9 (𝜑𝐷𝐸)
ssscongptld.10 (𝜑𝐸𝐺)
ssscongptld.11 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐷𝐸)))
ssscongptld.12 (𝜑 → (abs‘(𝐵𝐶)) = (abs‘(𝐸𝐺)))
ssscongptld.13 (𝜑 → (abs‘(𝐶𝐴)) = (abs‘(𝐺𝐷)))
Assertion
Ref Expression
ssscongptld (𝜑 → (cos‘((𝐴𝐵)𝐹(𝐶𝐵))) = (cos‘((𝐷𝐸)𝐹(𝐺𝐸))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem ssscongptld
StepHypRef Expression
1 negpitopissre 26499 . . . . 5 (-π(,]π) ⊆ ℝ
2 ax-resscn 11184 . . . . 5 ℝ ⊆ ℂ
31, 2sstri 3968 . . . 4 (-π(,]π) ⊆ ℂ
4 ssscongptld.angdef . . . . 5 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
5 ssscongptld.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
6 ssscongptld.2 . . . . . 6 (𝜑𝐵 ∈ ℂ)
75, 6subcld 11592 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
8 ssscongptld.7 . . . . . 6 (𝜑𝐴𝐵)
95, 6, 8subne0d 11601 . . . . 5 (𝜑 → (𝐴𝐵) ≠ 0)
10 ssscongptld.3 . . . . . 6 (𝜑𝐶 ∈ ℂ)
1110, 6subcld 11592 . . . . 5 (𝜑 → (𝐶𝐵) ∈ ℂ)
12 ssscongptld.8 . . . . . . 7 (𝜑𝐵𝐶)
1312necomd 2987 . . . . . 6 (𝜑𝐶𝐵)
1410, 6, 13subne0d 11601 . . . . 5 (𝜑 → (𝐶𝐵) ≠ 0)
154, 7, 9, 11, 14angcld 26765 . . . 4 (𝜑 → ((𝐴𝐵)𝐹(𝐶𝐵)) ∈ (-π(,]π))
163, 15sselid 3956 . . 3 (𝜑 → ((𝐴𝐵)𝐹(𝐶𝐵)) ∈ ℂ)
1716coscld 16147 . 2 (𝜑 → (cos‘((𝐴𝐵)𝐹(𝐶𝐵))) ∈ ℂ)
18 ssscongptld.4 . . . . . 6 (𝜑𝐷 ∈ ℂ)
19 ssscongptld.5 . . . . . 6 (𝜑𝐸 ∈ ℂ)
2018, 19subcld 11592 . . . . 5 (𝜑 → (𝐷𝐸) ∈ ℂ)
21 ssscongptld.9 . . . . . 6 (𝜑𝐷𝐸)
2218, 19, 21subne0d 11601 . . . . 5 (𝜑 → (𝐷𝐸) ≠ 0)
23 ssscongptld.6 . . . . . 6 (𝜑𝐺 ∈ ℂ)
2423, 19subcld 11592 . . . . 5 (𝜑 → (𝐺𝐸) ∈ ℂ)
25 ssscongptld.10 . . . . . . 7 (𝜑𝐸𝐺)
2625necomd 2987 . . . . . 6 (𝜑𝐺𝐸)
2723, 19, 26subne0d 11601 . . . . 5 (𝜑 → (𝐺𝐸) ≠ 0)
284, 20, 22, 24, 27angcld 26765 . . . 4 (𝜑 → ((𝐷𝐸)𝐹(𝐺𝐸)) ∈ (-π(,]π))
293, 28sselid 3956 . . 3 (𝜑 → ((𝐷𝐸)𝐹(𝐺𝐸)) ∈ ℂ)
3029coscld 16147 . 2 (𝜑 → (cos‘((𝐷𝐸)𝐹(𝐺𝐸))) ∈ ℂ)
3120abscld 15453 . . . 4 (𝜑 → (abs‘(𝐷𝐸)) ∈ ℝ)
3231recnd 11261 . . 3 (𝜑 → (abs‘(𝐷𝐸)) ∈ ℂ)
3324abscld 15453 . . . 4 (𝜑 → (abs‘(𝐺𝐸)) ∈ ℝ)
3433recnd 11261 . . 3 (𝜑 → (abs‘(𝐺𝐸)) ∈ ℂ)
3532, 34mulcld 11253 . 2 (𝜑 → ((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) ∈ ℂ)
3620, 22absne0d 15464 . . 3 (𝜑 → (abs‘(𝐷𝐸)) ≠ 0)
3724, 27absne0d 15464 . . 3 (𝜑 → (abs‘(𝐺𝐸)) ≠ 0)
3832, 34, 36, 37mulne0d 11887 . 2 (𝜑 → ((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) ≠ 0)
39 ssscongptld.11 . . . . 5 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐷𝐸)))
40 ssscongptld.12 . . . . . 6 (𝜑 → (abs‘(𝐵𝐶)) = (abs‘(𝐸𝐺)))
4110, 6abssubd 15470 . . . . . 6 (𝜑 → (abs‘(𝐶𝐵)) = (abs‘(𝐵𝐶)))
4223, 19abssubd 15470 . . . . . 6 (𝜑 → (abs‘(𝐺𝐸)) = (abs‘(𝐸𝐺)))
4340, 41, 423eqtr4d 2780 . . . . 5 (𝜑 → (abs‘(𝐶𝐵)) = (abs‘(𝐺𝐸)))
4439, 43oveq12d 7421 . . . 4 (𝜑 → ((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) = ((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))))
4544oveq1d 7418 . . 3 (𝜑 → (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))) = (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))))
4639, 32eqeltrd 2834 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℂ)
4743, 34eqeltrd 2834 . . . . . 6 (𝜑 → (abs‘(𝐶𝐵)) ∈ ℂ)
4846, 47mulcld 11253 . . . . 5 (𝜑 → ((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) ∈ ℂ)
4948, 17mulcld 11253 . . . 4 (𝜑 → (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))) ∈ ℂ)
5035, 30mulcld 11253 . . . 4 (𝜑 → (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐷𝐸)𝐹(𝐺𝐸)))) ∈ ℂ)
51 2cnd 12316 . . . 4 (𝜑 → 2 ∈ ℂ)
52 2ne0 12342 . . . . 5 2 ≠ 0
5352a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
5432sqcld 14160 . . . . . 6 (𝜑 → ((abs‘(𝐷𝐸))↑2) ∈ ℂ)
5534sqcld 14160 . . . . . 6 (𝜑 → ((abs‘(𝐺𝐸))↑2) ∈ ℂ)
5654, 55addcld 11252 . . . . 5 (𝜑 → (((abs‘(𝐷𝐸))↑2) + ((abs‘(𝐺𝐸))↑2)) ∈ ℂ)
5751, 49mulcld 11253 . . . . 5 (𝜑 → (2 · (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵))))) ∈ ℂ)
5851, 50mulcld 11253 . . . . 5 (𝜑 → (2 · (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐷𝐸)𝐹(𝐺𝐸))))) ∈ ℂ)
5939oveq1d 7418 . . . . . . . 8 (𝜑 → ((abs‘(𝐴𝐵))↑2) = ((abs‘(𝐷𝐸))↑2))
6043oveq1d 7418 . . . . . . . 8 (𝜑 → ((abs‘(𝐶𝐵))↑2) = ((abs‘(𝐺𝐸))↑2))
6159, 60oveq12d 7421 . . . . . . 7 (𝜑 → (((abs‘(𝐴𝐵))↑2) + ((abs‘(𝐶𝐵))↑2)) = (((abs‘(𝐷𝐸))↑2) + ((abs‘(𝐺𝐸))↑2)))
6261oveq1d 7418 . . . . . 6 (𝜑 → ((((abs‘(𝐴𝐵))↑2) + ((abs‘(𝐶𝐵))↑2)) − (2 · (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))))) = ((((abs‘(𝐷𝐸))↑2) + ((abs‘(𝐺𝐸))↑2)) − (2 · (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))))))
63 ssscongptld.13 . . . . . . . 8 (𝜑 → (abs‘(𝐶𝐴)) = (abs‘(𝐺𝐷)))
6463oveq1d 7418 . . . . . . 7 (𝜑 → ((abs‘(𝐶𝐴))↑2) = ((abs‘(𝐺𝐷))↑2))
65 eqid 2735 . . . . . . . . 9 (abs‘(𝐴𝐵)) = (abs‘(𝐴𝐵))
66 eqid 2735 . . . . . . . . 9 (abs‘(𝐶𝐵)) = (abs‘(𝐶𝐵))
67 eqid 2735 . . . . . . . . 9 (abs‘(𝐶𝐴)) = (abs‘(𝐶𝐴))
68 eqid 2735 . . . . . . . . 9 ((𝐴𝐵)𝐹(𝐶𝐵)) = ((𝐴𝐵)𝐹(𝐶𝐵))
694, 65, 66, 67, 68lawcos 26776 . . . . . . . 8 (((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶𝐵𝐴𝐵)) → ((abs‘(𝐶𝐴))↑2) = ((((abs‘(𝐴𝐵))↑2) + ((abs‘(𝐶𝐵))↑2)) − (2 · (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))))))
7010, 5, 6, 13, 8, 69syl32anc 1380 . . . . . . 7 (𝜑 → ((abs‘(𝐶𝐴))↑2) = ((((abs‘(𝐴𝐵))↑2) + ((abs‘(𝐶𝐵))↑2)) − (2 · (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))))))
71 eqid 2735 . . . . . . . . 9 (abs‘(𝐷𝐸)) = (abs‘(𝐷𝐸))
72 eqid 2735 . . . . . . . . 9 (abs‘(𝐺𝐸)) = (abs‘(𝐺𝐸))
73 eqid 2735 . . . . . . . . 9 (abs‘(𝐺𝐷)) = (abs‘(𝐺𝐷))
74 eqid 2735 . . . . . . . . 9 ((𝐷𝐸)𝐹(𝐺𝐸)) = ((𝐷𝐸)𝐹(𝐺𝐸))
754, 71, 72, 73, 74lawcos 26776 . . . . . . . 8 (((𝐺 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ) ∧ (𝐺𝐸𝐷𝐸)) → ((abs‘(𝐺𝐷))↑2) = ((((abs‘(𝐷𝐸))↑2) + ((abs‘(𝐺𝐸))↑2)) − (2 · (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐷𝐸)𝐹(𝐺𝐸)))))))
7623, 18, 19, 26, 21, 75syl32anc 1380 . . . . . . 7 (𝜑 → ((abs‘(𝐺𝐷))↑2) = ((((abs‘(𝐷𝐸))↑2) + ((abs‘(𝐺𝐸))↑2)) − (2 · (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐷𝐸)𝐹(𝐺𝐸)))))))
7764, 70, 763eqtr3d 2778 . . . . . 6 (𝜑 → ((((abs‘(𝐴𝐵))↑2) + ((abs‘(𝐶𝐵))↑2)) − (2 · (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))))) = ((((abs‘(𝐷𝐸))↑2) + ((abs‘(𝐺𝐸))↑2)) − (2 · (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐷𝐸)𝐹(𝐺𝐸)))))))
7862, 77eqtr3d 2772 . . . . 5 (𝜑 → ((((abs‘(𝐷𝐸))↑2) + ((abs‘(𝐺𝐸))↑2)) − (2 · (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))))) = ((((abs‘(𝐷𝐸))↑2) + ((abs‘(𝐺𝐸))↑2)) − (2 · (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐷𝐸)𝐹(𝐺𝐸)))))))
7956, 57, 58, 78subcand 11633 . . . 4 (𝜑 → (2 · (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵))))) = (2 · (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐷𝐸)𝐹(𝐺𝐸))))))
8049, 50, 51, 53, 79mulcanad 11870 . . 3 (𝜑 → (((abs‘(𝐴𝐵)) · (abs‘(𝐶𝐵))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))) = (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐷𝐸)𝐹(𝐺𝐸)))))
8145, 80eqtr3d 2772 . 2 (𝜑 → (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐴𝐵)𝐹(𝐶𝐵)))) = (((abs‘(𝐷𝐸)) · (abs‘(𝐺𝐸))) · (cos‘((𝐷𝐸)𝐹(𝐺𝐸)))))
8217, 30, 35, 38, 81mulcanad 11870 1 (𝜑 → (cos‘((𝐴𝐵)𝐹(𝐶𝐵))) = (cos‘((𝐷𝐸)𝐹(𝐺𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  cdif 3923  {csn 4601  cfv 6530  (class class class)co 7403  cmpo 7405  cc 11125  cr 11126  0cc0 11127   + caddc 11130   · cmul 11132  cmin 11464  -cneg 11465   / cdiv 11892  2c2 12293  (,]cioc 13361  cexp 14077  cim 15115  abscabs 15251  cosccos 16078  πcpi 16080  logclog 26513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-log 26515
This theorem is referenced by:  chordthmlem  26792
  Copyright terms: Public domain W3C validator