![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subeq0ad | Structured version Visualization version GIF version |
Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 11533. Generalization of subeq0d 11626. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
subeq0ad | ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subeq0 11533 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 0cc0 11153 − cmin 11490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 |
This theorem is referenced by: subne0ad 11629 subeq0bd 11687 muleqadd 11905 mulcan1g 11914 ofsubeq0 12261 nn0n0n1ge2 12592 mod0 13913 modirr 13980 addmodlteq 13984 sqreulem 15395 sqreu 15396 tanaddlem 16199 fldivp1 16931 4sqlem11 16989 4sqlem16 16994 znf1o 21588 cphsqrtcl2 25234 rrxmet 25456 dvcobr 25998 dvcobrOLD 25999 dvcnvlem 26029 cmvth 26044 cmvthOLD 26045 dvlip 26047 lhop1lem 26067 ftc1lem5 26096 aalioulem2 26390 sineq0 26581 tanarg 26676 affineequiv 26881 quad2 26897 dcubic 26904 eqeelen 28934 colinearalg 28940 axcontlem7 29000 ipasslem9 30867 ip2eqi 30885 hi2eq 31134 lnopeqi 32037 riesz3i 32091 2sqr3minply 33753 signslema 34556 circlemeth 34634 poimirlem32 37639 broucube 37641 rrnmet 37816 eqrabdioph 42765 pellexlem1 42817 sineq0ALT 44935 digexp 48457 eenglngeehlnmlem2 48588 2itscp 48631 |
Copyright terms: Public domain | W3C validator |