MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0ad Structured version   Visualization version   GIF version

Theorem subeq0ad 11435
Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 11340. Generalization of subeq0d 11433. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
subeq0ad (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem subeq0ad
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subeq0 11340 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
41, 2, 3syl2anc 584 1 (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  (class class class)co 7329  cc 10962  0cc0 10964  cmin 11298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-po 5526  df-so 5527  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-ltxr 11107  df-sub 11300
This theorem is referenced by:  subne0ad  11436  subeq0bd  11494  muleqadd  11712  mulcan1g  11721  ofsubeq0  12063  nn0n0n1ge2  12393  mod0  13689  modirr  13755  addmodlteq  13759  sqreulem  15162  sqreu  15163  tanaddlem  15966  fldivp1  16687  4sqlem11  16745  4sqlem16  16750  znf1o  20857  cphsqrtcl2  24448  rrxmet  24670  dvcobr  25208  dvcnvlem  25238  cmvth  25253  dvlip  25255  lhop1lem  25275  ftc1lem5  25302  aalioulem2  25591  sineq0  25778  tanarg  25872  affineequiv  26071  quad2  26087  dcubic  26094  eqeelen  27474  colinearalg  27480  axcontlem7  27540  ipasslem9  29401  ip2eqi  29419  hi2eq  29668  lnopeqi  30571  riesz3i  30625  signslema  32754  circlemeth  32833  poimirlem32  35907  broucube  35909  rrnmet  36085  eqrabdioph  40849  pellexlem1  40901  sineq0ALT  42867  digexp  46293  eenglngeehlnmlem2  46424  2itscp  46467
  Copyright terms: Public domain W3C validator