Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subeq0ad | Structured version Visualization version GIF version |
Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 11104. Generalization of subeq0d 11197. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
subeq0ad | ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subeq0 11104 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 (class class class)co 7213 ℂcc 10727 0cc0 10729 − cmin 11062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-sub 11064 |
This theorem is referenced by: subne0ad 11200 subeq0bd 11258 muleqadd 11476 mulcan1g 11485 ofsubeq0 11827 nn0n0n1ge2 12157 mod0 13449 modirr 13515 addmodlteq 13519 sqreulem 14923 sqreu 14924 tanaddlem 15727 fldivp1 16450 4sqlem11 16508 4sqlem16 16513 znf1o 20516 cphsqrtcl2 24083 rrxmet 24305 dvcobr 24843 dvcnvlem 24873 cmvth 24888 dvlip 24890 lhop1lem 24910 ftc1lem5 24937 aalioulem2 25226 sineq0 25413 tanarg 25507 affineequiv 25706 quad2 25722 dcubic 25729 eqeelen 26995 colinearalg 27001 axcontlem7 27061 ipasslem9 28919 ip2eqi 28937 hi2eq 29186 lnopeqi 30089 riesz3i 30143 signslema 32253 circlemeth 32332 poimirlem32 35546 broucube 35548 rrnmet 35724 eqrabdioph 40302 pellexlem1 40354 sineq0ALT 42230 digexp 45626 eenglngeehlnmlem2 45757 2itscp 45800 |
Copyright terms: Public domain | W3C validator |