| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subeq0ad | Structured version Visualization version GIF version | ||
| Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 11448. Generalization of subeq0d 11541. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subeq0ad | ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subeq0 11448 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 − cmin 11405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 |
| This theorem is referenced by: subne0ad 11544 subeq0bd 11604 muleqadd 11822 mulcan1g 11831 ofsubeq0 12183 nn0n0n1ge2 12510 mod0 13838 modirr 13907 addmodlteq 13911 sqreulem 15326 sqreu 15327 tanaddlem 16134 fldivp1 16868 4sqlem11 16926 4sqlem16 16931 znf1o 21461 cphsqrtcl2 25086 rrxmet 25308 dvcobr 25849 dvcobrOLD 25850 dvcnvlem 25880 cmvth 25895 cmvthOLD 25896 dvlip 25898 lhop1lem 25918 ftc1lem5 25947 aalioulem2 26241 sineq0 26433 tanarg 26528 affineequiv 26733 quad2 26749 dcubic 26756 eqeelen 28831 colinearalg 28837 axcontlem7 28897 ipasslem9 30767 ip2eqi 30785 hi2eq 31034 lnopeqi 31937 riesz3i 31991 2sqr3minply 33770 signslema 34553 circlemeth 34631 poimirlem32 37646 broucube 37648 rrnmet 37823 eqrabdioph 42765 pellexlem1 42817 sineq0ALT 44926 digexp 48596 eenglngeehlnmlem2 48727 2itscp 48770 |
| Copyright terms: Public domain | W3C validator |