| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subeq0ad | Structured version Visualization version GIF version | ||
| Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 11455. Generalization of subeq0d 11548. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subeq0ad | ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subeq0 11455 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 − cmin 11412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 |
| This theorem is referenced by: subne0ad 11551 subeq0bd 11611 muleqadd 11829 mulcan1g 11838 ofsubeq0 12190 nn0n0n1ge2 12517 mod0 13845 modirr 13914 addmodlteq 13918 sqreulem 15333 sqreu 15334 tanaddlem 16141 fldivp1 16875 4sqlem11 16933 4sqlem16 16938 znf1o 21468 cphsqrtcl2 25093 rrxmet 25315 dvcobr 25856 dvcobrOLD 25857 dvcnvlem 25887 cmvth 25902 cmvthOLD 25903 dvlip 25905 lhop1lem 25925 ftc1lem5 25954 aalioulem2 26248 sineq0 26440 tanarg 26535 affineequiv 26740 quad2 26756 dcubic 26763 eqeelen 28838 colinearalg 28844 axcontlem7 28904 ipasslem9 30774 ip2eqi 30792 hi2eq 31041 lnopeqi 31944 riesz3i 31998 2sqr3minply 33777 signslema 34560 circlemeth 34638 poimirlem32 37653 broucube 37655 rrnmet 37830 eqrabdioph 42772 pellexlem1 42824 sineq0ALT 44933 digexp 48600 eenglngeehlnmlem2 48731 2itscp 48774 |
| Copyright terms: Public domain | W3C validator |