| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subeq0ad | Structured version Visualization version GIF version | ||
| Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 11390. Generalization of subeq0d 11483. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subeq0ad | ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subeq0 11390 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 0cc0 11009 − cmin 11347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 |
| This theorem is referenced by: subne0ad 11486 subeq0bd 11546 muleqadd 11764 mulcan1g 11773 ofsubeq0 12125 nn0n0n1ge2 12452 mod0 13780 modirr 13849 addmodlteq 13853 sqreulem 15267 sqreu 15268 tanaddlem 16075 fldivp1 16809 4sqlem11 16867 4sqlem16 16872 znf1o 21458 cphsqrtcl2 25084 rrxmet 25306 dvcobr 25847 dvcobrOLD 25848 dvcnvlem 25878 cmvth 25893 cmvthOLD 25894 dvlip 25896 lhop1lem 25916 ftc1lem5 25945 aalioulem2 26239 sineq0 26431 tanarg 26526 affineequiv 26731 quad2 26747 dcubic 26754 eqeelen 28849 colinearalg 28855 axcontlem7 28915 ipasslem9 30782 ip2eqi 30800 hi2eq 31049 lnopeqi 31952 riesz3i 32006 2sqr3minply 33747 signslema 34530 circlemeth 34608 poimirlem32 37636 broucube 37638 rrnmet 37813 eqrabdioph 42754 pellexlem1 42806 sineq0ALT 44914 digexp 48596 eenglngeehlnmlem2 48727 2itscp 48770 |
| Copyright terms: Public domain | W3C validator |