MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0ad Structured version   Visualization version   GIF version

Theorem subeq0ad 11630
Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 11535. Generalization of subeq0d 11628. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
subeq0ad (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem subeq0ad
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subeq0 11535 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
41, 2, 3syl2anc 584 1 (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  (class class class)co 7431  cc 11153  0cc0 11155  cmin 11492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494
This theorem is referenced by:  subne0ad  11631  subeq0bd  11689  muleqadd  11907  mulcan1g  11916  ofsubeq0  12263  nn0n0n1ge2  12594  mod0  13916  modirr  13983  addmodlteq  13987  sqreulem  15398  sqreu  15399  tanaddlem  16202  fldivp1  16935  4sqlem11  16993  4sqlem16  16998  znf1o  21570  cphsqrtcl2  25220  rrxmet  25442  dvcobr  25983  dvcobrOLD  25984  dvcnvlem  26014  cmvth  26029  cmvthOLD  26030  dvlip  26032  lhop1lem  26052  ftc1lem5  26081  aalioulem2  26375  sineq0  26566  tanarg  26661  affineequiv  26866  quad2  26882  dcubic  26889  eqeelen  28919  colinearalg  28925  axcontlem7  28985  ipasslem9  30857  ip2eqi  30875  hi2eq  31124  lnopeqi  32027  riesz3i  32081  2sqr3minply  33791  signslema  34577  circlemeth  34655  poimirlem32  37659  broucube  37661  rrnmet  37836  eqrabdioph  42788  pellexlem1  42840  sineq0ALT  44957  digexp  48528  eenglngeehlnmlem2  48659  2itscp  48702
  Copyright terms: Public domain W3C validator