MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0ad Structured version   Visualization version   GIF version

Theorem subeq0ad 11543
Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 11448. Generalization of subeq0d 11541. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
subeq0ad (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem subeq0ad
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subeq0 11448 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
41, 2, 3syl2anc 584 1 (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  0cc0 11068  cmin 11405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407
This theorem is referenced by:  subne0ad  11544  subeq0bd  11604  muleqadd  11822  mulcan1g  11831  ofsubeq0  12183  nn0n0n1ge2  12510  mod0  13838  modirr  13907  addmodlteq  13911  sqreulem  15326  sqreu  15327  tanaddlem  16134  fldivp1  16868  4sqlem11  16926  4sqlem16  16931  znf1o  21461  cphsqrtcl2  25086  rrxmet  25308  dvcobr  25849  dvcobrOLD  25850  dvcnvlem  25880  cmvth  25895  cmvthOLD  25896  dvlip  25898  lhop1lem  25918  ftc1lem5  25947  aalioulem2  26241  sineq0  26433  tanarg  26528  affineequiv  26733  quad2  26749  dcubic  26756  eqeelen  28831  colinearalg  28837  axcontlem7  28897  ipasslem9  30767  ip2eqi  30785  hi2eq  31034  lnopeqi  31937  riesz3i  31991  2sqr3minply  33770  signslema  34553  circlemeth  34631  poimirlem32  37646  broucube  37648  rrnmet  37823  eqrabdioph  42765  pellexlem1  42817  sineq0ALT  44926  digexp  48596  eenglngeehlnmlem2  48727  2itscp  48770
  Copyright terms: Public domain W3C validator