MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atansopn Structured version   Visualization version   GIF version

Theorem atansopn 25670
Description: The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
atansopn 𝑆 ∈ (TopOpen‘ℂfld)
Distinct variable group:   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem atansopn
StepHypRef Expression
1 atansopn.s . . 3 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
2 eqid 2738 . . . 4 (𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (1 + (𝑦↑2)))
32mptpreima 6071 . . 3 ((𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) “ 𝐷) = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
41, 3eqtr4i 2764 . 2 𝑆 = ((𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) “ 𝐷)
5 eqid 2738 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
65cnfldtopon 23536 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
76a1i 11 . . . . 5 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
8 1cnd 10715 . . . . . 6 (⊤ → 1 ∈ ℂ)
97, 7, 8cnmptc 22414 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
10 2nn0 11994 . . . . . 6 2 ∈ ℕ0
115expcn 23625 . . . . . 6 (2 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
1210, 11mp1i 13 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
135addcn 23618 . . . . . 6 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1413a1i 11 . . . . 5 (⊤ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
157, 9, 12, 14cnmpt12f 22418 . . . 4 (⊤ → (𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
1615mptru 1549 . . 3 (𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
17 atansopn.d . . . 4 𝐷 = (ℂ ∖ (-∞(,]0))
1817logdmopn 25392 . . 3 𝐷 ∈ (TopOpen‘ℂfld)
19 cnima 22017 . . 3 (((𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ 𝐷 ∈ (TopOpen‘ℂfld)) → ((𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) “ 𝐷) ∈ (TopOpen‘ℂfld))
2016, 18, 19mp2an 692 . 2 ((𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) “ 𝐷) ∈ (TopOpen‘ℂfld)
214, 20eqeltri 2829 1 𝑆 ∈ (TopOpen‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wtru 1543  wcel 2113  {crab 3057  cdif 3841  cmpt 5111  ccnv 5525  cima 5529  cfv 6340  (class class class)co 7171  cc 10614  0cc0 10616  1c1 10617   + caddc 10619  -∞cmnf 10752  2c2 11772  0cn0 11977  (,]cioc 12823  cexp 13522  TopOpenctopn 16799  fldccnfld 20218  TopOnctopon 21662   Cn ccn 21976   ×t ctx 22312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693  ax-pre-sup 10694  ax-addf 10695  ax-mulf 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-of 7426  df-om 7601  df-1st 7715  df-2nd 7716  df-supp 7858  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-1o 8132  df-2o 8133  df-er 8321  df-map 8440  df-ixp 8509  df-en 8557  df-dom 8558  df-sdom 8559  df-fin 8560  df-fsupp 8908  df-fi 8949  df-sup 8980  df-inf 8981  df-oi 9048  df-card 9442  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-div 11377  df-nn 11718  df-2 11780  df-3 11781  df-4 11782  df-5 11783  df-6 11784  df-7 11785  df-8 11786  df-9 11787  df-n0 11978  df-z 12064  df-dec 12181  df-uz 12326  df-q 12432  df-rp 12474  df-xneg 12591  df-xadd 12592  df-xmul 12593  df-ioo 12826  df-ioc 12827  df-icc 12829  df-fz 12983  df-fzo 13126  df-seq 13462  df-exp 13523  df-hash 13784  df-cj 14549  df-re 14550  df-im 14551  df-sqrt 14685  df-abs 14686  df-struct 16589  df-ndx 16590  df-slot 16591  df-base 16593  df-sets 16594  df-ress 16595  df-plusg 16682  df-mulr 16683  df-starv 16684  df-sca 16685  df-vsca 16686  df-ip 16687  df-tset 16688  df-ple 16689  df-ds 16691  df-unif 16692  df-hom 16693  df-cco 16694  df-rest 16800  df-topn 16801  df-0g 16819  df-gsum 16820  df-topgen 16821  df-pt 16822  df-prds 16825  df-xrs 16879  df-qtop 16884  df-imas 16885  df-xps 16887  df-mre 16961  df-mrc 16962  df-acs 16964  df-mgm 17969  df-sgrp 18018  df-mnd 18029  df-submnd 18074  df-mulg 18344  df-cntz 18566  df-cmn 19027  df-psmet 20210  df-xmet 20211  df-met 20212  df-bl 20213  df-mopn 20214  df-cnfld 20219  df-top 21646  df-topon 21663  df-topsp 21685  df-bases 21698  df-cld 21771  df-cn 21979  df-cnp 21980  df-tx 22314  df-hmeo 22507  df-xms 23074  df-ms 23075  df-tms 23076
This theorem is referenced by:  dvatan  25673
  Copyright terms: Public domain W3C validator