Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > atansopn | Structured version Visualization version GIF version |
Description: The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015.) |
Ref | Expression |
---|---|
atansopn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
atansopn.s | ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
Ref | Expression |
---|---|
atansopn | ⊢ 𝑆 ∈ (TopOpen‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atansopn.s | . . 3 ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} | |
2 | eqid 2738 | . . . 4 ⊢ (𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) | |
3 | 2 | mptpreima 6071 | . . 3 ⊢ (◡(𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) “ 𝐷) = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
4 | 1, 3 | eqtr4i 2764 | . 2 ⊢ 𝑆 = (◡(𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) “ 𝐷) |
5 | eqid 2738 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
6 | 5 | cnfldtopon 23536 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
8 | 1cnd 10715 | . . . . . 6 ⊢ (⊤ → 1 ∈ ℂ) | |
9 | 7, 7, 8 | cnmptc 22414 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
10 | 2nn0 11994 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
11 | 5 | expcn 23625 | . . . . . 6 ⊢ (2 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
13 | 5 | addcn 23618 | . . . . . 6 ⊢ + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
15 | 7, 9, 12, 14 | cnmpt12f 22418 | . . . 4 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
16 | 15 | mptru 1549 | . . 3 ⊢ (𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
17 | atansopn.d | . . . 4 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
18 | 17 | logdmopn 25392 | . . 3 ⊢ 𝐷 ∈ (TopOpen‘ℂfld) |
19 | cnima 22017 | . . 3 ⊢ (((𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ 𝐷 ∈ (TopOpen‘ℂfld)) → (◡(𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) “ 𝐷) ∈ (TopOpen‘ℂfld)) | |
20 | 16, 18, 19 | mp2an 692 | . 2 ⊢ (◡(𝑦 ∈ ℂ ↦ (1 + (𝑦↑2))) “ 𝐷) ∈ (TopOpen‘ℂfld) |
21 | 4, 20 | eqeltri 2829 | 1 ⊢ 𝑆 ∈ (TopOpen‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ⊤wtru 1543 ∈ wcel 2113 {crab 3057 ∖ cdif 3841 ↦ cmpt 5111 ◡ccnv 5525 “ cima 5529 ‘cfv 6340 (class class class)co 7171 ℂcc 10614 0cc0 10616 1c1 10617 + caddc 10619 -∞cmnf 10752 2c2 11772 ℕ0cn0 11977 (,]cioc 12823 ↑cexp 13522 TopOpenctopn 16799 ℂfldccnfld 20218 TopOnctopon 21662 Cn ccn 21976 ×t ctx 22312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-cnex 10672 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 ax-pre-mulgt0 10693 ax-pre-sup 10694 ax-addf 10695 ax-mulf 10696 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-iin 4885 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-se 5485 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-of 7426 df-om 7601 df-1st 7715 df-2nd 7716 df-supp 7858 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-1o 8132 df-2o 8133 df-er 8321 df-map 8440 df-ixp 8509 df-en 8557 df-dom 8558 df-sdom 8559 df-fin 8560 df-fsupp 8908 df-fi 8949 df-sup 8980 df-inf 8981 df-oi 9048 df-card 9442 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-sub 10951 df-neg 10952 df-div 11377 df-nn 11718 df-2 11780 df-3 11781 df-4 11782 df-5 11783 df-6 11784 df-7 11785 df-8 11786 df-9 11787 df-n0 11978 df-z 12064 df-dec 12181 df-uz 12326 df-q 12432 df-rp 12474 df-xneg 12591 df-xadd 12592 df-xmul 12593 df-ioo 12826 df-ioc 12827 df-icc 12829 df-fz 12983 df-fzo 13126 df-seq 13462 df-exp 13523 df-hash 13784 df-cj 14549 df-re 14550 df-im 14551 df-sqrt 14685 df-abs 14686 df-struct 16589 df-ndx 16590 df-slot 16591 df-base 16593 df-sets 16594 df-ress 16595 df-plusg 16682 df-mulr 16683 df-starv 16684 df-sca 16685 df-vsca 16686 df-ip 16687 df-tset 16688 df-ple 16689 df-ds 16691 df-unif 16692 df-hom 16693 df-cco 16694 df-rest 16800 df-topn 16801 df-0g 16819 df-gsum 16820 df-topgen 16821 df-pt 16822 df-prds 16825 df-xrs 16879 df-qtop 16884 df-imas 16885 df-xps 16887 df-mre 16961 df-mrc 16962 df-acs 16964 df-mgm 17969 df-sgrp 18018 df-mnd 18029 df-submnd 18074 df-mulg 18344 df-cntz 18566 df-cmn 19027 df-psmet 20210 df-xmet 20211 df-met 20212 df-bl 20213 df-mopn 20214 df-cnfld 20219 df-top 21646 df-topon 21663 df-topsp 21685 df-bases 21698 df-cld 21771 df-cn 21979 df-cnp 21980 df-tx 22314 df-hmeo 22507 df-xms 23074 df-ms 23075 df-tms 23076 |
This theorem is referenced by: dvatan 25673 |
Copyright terms: Public domain | W3C validator |