Step | Hyp | Ref
| Expression |
1 | | oveq2 7409 |
. . . 4
β’ (π = 0 β (π₯βπ) = (π₯β0)) |
2 | 1 | mpteq2dv 5240 |
. . 3
β’ (π = 0 β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯β0))) |
3 | 2 | eleq1d 2810 |
. 2
β’ (π = 0 β ((π₯ β β β¦ (π₯βπ)) β (π½ Cn π½) β (π₯ β β β¦ (π₯β0)) β (π½ Cn π½))) |
4 | | oveq2 7409 |
. . . 4
β’ (π = π β (π₯βπ) = (π₯βπ)) |
5 | 4 | mpteq2dv 5240 |
. . 3
β’ (π = π β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯βπ))) |
6 | 5 | eleq1d 2810 |
. 2
β’ (π = π β ((π₯ β β β¦ (π₯βπ)) β (π½ Cn π½) β (π₯ β β β¦ (π₯βπ)) β (π½ Cn π½))) |
7 | | oveq2 7409 |
. . . 4
β’ (π = (π + 1) β (π₯βπ) = (π₯β(π + 1))) |
8 | 7 | mpteq2dv 5240 |
. . 3
β’ (π = (π + 1) β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯β(π + 1)))) |
9 | 8 | eleq1d 2810 |
. 2
β’ (π = (π + 1) β ((π₯ β β β¦ (π₯βπ)) β (π½ Cn π½) β (π₯ β β β¦ (π₯β(π + 1))) β (π½ Cn π½))) |
10 | | oveq2 7409 |
. . . 4
β’ (π = π β (π₯βπ) = (π₯βπ)) |
11 | 10 | mpteq2dv 5240 |
. . 3
β’ (π = π β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯βπ))) |
12 | 11 | eleq1d 2810 |
. 2
β’ (π = π β ((π₯ β β β¦ (π₯βπ)) β (π½ Cn π½) β (π₯ β β β¦ (π₯βπ)) β (π½ Cn π½))) |
13 | | exp0 14027 |
. . . 4
β’ (π₯ β β β (π₯β0) = 1) |
14 | 13 | mpteq2ia 5241 |
. . 3
β’ (π₯ β β β¦ (π₯β0)) = (π₯ β β β¦ 1) |
15 | | expcnOLD.j |
. . . . . . 7
β’ π½ =
(TopOpenββfld) |
16 | 15 | cnfldtopon 24609 |
. . . . . 6
β’ π½ β
(TopOnββ) |
17 | 16 | a1i 11 |
. . . . 5
β’ (β€
β π½ β
(TopOnββ)) |
18 | | 1cnd 11205 |
. . . . 5
β’ (β€
β 1 β β) |
19 | 17, 17, 18 | cnmptc 23476 |
. . . 4
β’ (β€
β (π₯ β β
β¦ 1) β (π½ Cn
π½)) |
20 | 19 | mptru 1540 |
. . 3
β’ (π₯ β β β¦ 1)
β (π½ Cn π½) |
21 | 14, 20 | eqeltri 2821 |
. 2
β’ (π₯ β β β¦ (π₯β0)) β (π½ Cn π½) |
22 | | oveq1 7408 |
. . . . . 6
β’ (π₯ = π β (π₯β(π + 1)) = (πβ(π + 1))) |
23 | 22 | cbvmptv 5251 |
. . . . 5
β’ (π₯ β β β¦ (π₯β(π + 1))) = (π β β β¦ (πβ(π + 1))) |
24 | | id 22 |
. . . . . . 7
β’ (π β β β π β
β) |
25 | | simpl 482 |
. . . . . . 7
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β π β β0) |
26 | | expp1 14030 |
. . . . . . 7
β’ ((π β β β§ π β β0)
β (πβ(π + 1)) = ((πβπ) Β· π)) |
27 | 24, 25, 26 | syl2anr 596 |
. . . . . 6
β’ (((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β§ π β β) β (πβ(π + 1)) = ((πβπ) Β· π)) |
28 | 27 | mpteq2dva 5238 |
. . . . 5
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π β β β¦ (πβ(π + 1))) = (π β β β¦ ((πβπ) Β· π))) |
29 | 23, 28 | eqtrid 2776 |
. . . 4
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π₯ β β β¦ (π₯β(π + 1))) = (π β β β¦ ((πβπ) Β· π))) |
30 | 16 | a1i 11 |
. . . . 5
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β π½ β
(TopOnββ)) |
31 | | oveq1 7408 |
. . . . . . 7
β’ (π₯ = π β (π₯βπ) = (πβπ)) |
32 | 31 | cbvmptv 5251 |
. . . . . 6
β’ (π₯ β β β¦ (π₯βπ)) = (π β β β¦ (πβπ)) |
33 | | simpr 484 |
. . . . . 6
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π₯ β β β¦ (π₯βπ)) β (π½ Cn π½)) |
34 | 32, 33 | eqeltrrid 2830 |
. . . . 5
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π β β β¦ (πβπ)) β (π½ Cn π½)) |
35 | 30 | cnmptid 23475 |
. . . . 5
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π β β β¦ π) β (π½ Cn π½)) |
36 | 15 | mulcn 24693 |
. . . . . 6
β’ Β·
β ((π½
Γt π½) Cn
π½) |
37 | 36 | a1i 11 |
. . . . 5
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β Β· β ((π½ Γt π½) Cn π½)) |
38 | 30, 34, 35, 37 | cnmpt12f 23480 |
. . . 4
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π β β β¦ ((πβπ) Β· π)) β (π½ Cn π½)) |
39 | 29, 38 | eqeltrd 2825 |
. . 3
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π₯ β β β¦ (π₯β(π + 1))) β (π½ Cn π½)) |
40 | 39 | ex 412 |
. 2
β’ (π β β0
β ((π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½) β (π₯ β β β¦ (π₯β(π + 1))) β (π½ Cn π½))) |
41 | 3, 6, 9, 12, 21, 40 | nn0ind 12653 |
1
β’ (π β β0
β (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) |