| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expcnOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of expcn 24799 as of 6-Apr-2025. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| expcnOLD.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| expcnOLD | ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7407 | . . . 4 ⊢ (𝑛 = 0 → (𝑥↑𝑛) = (𝑥↑0)) | |
| 2 | 1 | mpteq2dv 5212 | . . 3 ⊢ (𝑛 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑0))) |
| 3 | 2 | eleq1d 2818 | . 2 ⊢ (𝑛 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽))) |
| 4 | oveq2 7407 | . . . 4 ⊢ (𝑛 = 𝑘 → (𝑥↑𝑛) = (𝑥↑𝑘)) | |
| 5 | 4 | mpteq2dv 5212 | . . 3 ⊢ (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘))) |
| 6 | 5 | eleq1d 2818 | . 2 ⊢ (𝑛 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽))) |
| 7 | oveq2 7407 | . . . 4 ⊢ (𝑛 = (𝑘 + 1) → (𝑥↑𝑛) = (𝑥↑(𝑘 + 1))) | |
| 8 | 7 | mpteq2dv 5212 | . . 3 ⊢ (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) |
| 9 | 8 | eleq1d 2818 | . 2 ⊢ (𝑛 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))) |
| 10 | oveq2 7407 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑥↑𝑛) = (𝑥↑𝑁)) | |
| 11 | 10 | mpteq2dv 5212 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) |
| 12 | 11 | eleq1d 2818 | . 2 ⊢ (𝑛 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽))) |
| 13 | exp0 14072 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
| 14 | 13 | mpteq2ia 5213 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1) |
| 15 | expcnOLD.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 16 | 15 | cnfldtopon 24706 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 17 | 16 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℂ)) |
| 18 | 1cnd 11222 | . . . . 5 ⊢ (⊤ → 1 ∈ ℂ) | |
| 19 | 17, 17, 18 | cnmptc 23585 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽)) |
| 20 | 19 | mptru 1546 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽) |
| 21 | 14, 20 | eqeltri 2829 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽) |
| 22 | oveq1 7406 | . . . . . 6 ⊢ (𝑥 = 𝑛 → (𝑥↑(𝑘 + 1)) = (𝑛↑(𝑘 + 1))) | |
| 23 | 22 | cbvmptv 5222 | . . . . 5 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) |
| 24 | id 22 | . . . . . . 7 ⊢ (𝑛 ∈ ℂ → 𝑛 ∈ ℂ) | |
| 25 | simpl 482 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝑘 ∈ ℕ0) | |
| 26 | expp1 14075 | . . . . . . 7 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘) · 𝑛)) | |
| 27 | 24, 25, 26 | syl2anr 597 | . . . . . 6 ⊢ (((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) ∧ 𝑛 ∈ ℂ) → (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘) · 𝑛)) |
| 28 | 27 | mpteq2dva 5211 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘) · 𝑛))) |
| 29 | 23, 28 | eqtrid 2781 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘) · 𝑛))) |
| 30 | 16 | a1i 11 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘ℂ)) |
| 31 | oveq1 7406 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → (𝑥↑𝑘) = (𝑛↑𝑘)) | |
| 32 | 31 | cbvmptv 5222 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) = (𝑛 ∈ ℂ ↦ (𝑛↑𝑘)) |
| 33 | simpr 484 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) | |
| 34 | 32, 33 | eqeltrrid 2838 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑𝑘)) ∈ (𝐽 Cn 𝐽)) |
| 35 | 30 | cnmptid 23584 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ 𝑛) ∈ (𝐽 Cn 𝐽)) |
| 36 | 15 | mulcn 24792 | . . . . . 6 ⊢ · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
| 37 | 36 | a1i 11 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 38 | 30, 34, 35, 37 | cnmpt12f 23589 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘) · 𝑛)) ∈ (𝐽 Cn 𝐽)) |
| 39 | 29, 38 | eqeltrd 2833 | . . 3 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽)) |
| 40 | 39 | ex 412 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))) |
| 41 | 3, 6, 9, 12, 21, 40 | nn0ind 12680 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ↦ cmpt 5198 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 0cc0 11121 1c1 11122 + caddc 11124 · cmul 11126 ℕ0cn0 12493 ↑cexp 14068 TopOpenctopn 17420 ℂfldccnfld 21300 TopOnctopon 22833 Cn ccn 23147 ×t ctx 23483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 ax-mulf 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-fi 9417 df-sup 9448 df-inf 9449 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-q 12957 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-icc 13360 df-fz 13514 df-fzo 13661 df-seq 14009 df-exp 14069 df-hash 14337 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-hom 17280 df-cco 17281 df-rest 17421 df-topn 17422 df-0g 17440 df-gsum 17441 df-topgen 17442 df-pt 17443 df-prds 17446 df-xrs 17501 df-qtop 17506 df-imas 17507 df-xps 17509 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-mulg 19036 df-cntz 19285 df-cmn 19748 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-cnfld 21301 df-top 22817 df-topon 22834 df-topsp 22856 df-bases 22869 df-cn 23150 df-cnp 23151 df-tx 23485 df-hmeo 23678 df-xms 24244 df-ms 24245 df-tms 24246 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |