Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  doca3N Structured version   Visualization version   GIF version

Theorem doca3N 41166
Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
doca2.h 𝐻 = (LHyp‘𝐾)
doca2.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
doca2.n = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
doca3N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( 𝑋)) = 𝑋)

Proof of Theorem doca3N
StepHypRef Expression
1 doca2.h . . . 4 𝐻 = (LHyp‘𝐾)
2 doca2.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
31, 2diacnvclN 41090 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼𝑋) ∈ dom 𝐼)
4 doca2.n . . . 4 = ((ocA‘𝐾)‘𝑊)
51, 2, 4doca2N 41165 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ dom 𝐼) → ( ‘( ‘(𝐼‘(𝐼𝑋)))) = (𝐼‘(𝐼𝑋)))
63, 5syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( ‘(𝐼‘(𝐼𝑋)))) = (𝐼‘(𝐼𝑋)))
71, 2diaf11N 41088 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
8 f1ocnvfv2 7206 . . . . 5 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑋 ∈ ran 𝐼) → (𝐼‘(𝐼𝑋)) = 𝑋)
97, 8sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(𝐼𝑋)) = 𝑋)
109fveq2d 6821 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘(𝐼‘(𝐼𝑋))) = ( 𝑋))
1110fveq2d 6821 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( ‘(𝐼‘(𝐼𝑋)))) = ( ‘( 𝑋)))
126, 11, 93eqtr3d 2774 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( 𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ccnv 5610  dom cdm 5611  ran crn 5612  1-1-ontowf1o 6475  cfv 6476  HLchlt 39389  LHypclh 40023  DIsoAcdia 41067  ocAcocaN 41158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-undef 8198  df-map 8747  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-cmtN 39216  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198  df-disoa 41068  df-docaN 41159
This theorem is referenced by:  diarnN  41168
  Copyright terms: Public domain W3C validator