MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1enALT Structured version   Visualization version   GIF version

Theorem dif1enALT 9050
Description: Alternate proof of dif1en 8945 with fewer symbols using ax-pow 5288. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dif1enALT ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1enALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano2 7737 . . . . 5 (𝑀 ∈ ω → suc 𝑀 ∈ ω)
2 breq2 5078 . . . . . . 7 (𝑥 = suc 𝑀 → (𝐴𝑥𝐴 ≈ suc 𝑀))
32rspcev 3561 . . . . . 6 ((suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 8764 . . . . . 6 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
53, 4sylibr 233 . . . . 5 ((suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
61, 5sylan 580 . . . 4 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
7 diffi 8962 . . . . 5 (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin)
8 isfi 8764 . . . . 5 ((𝐴 ∖ {𝑋}) ∈ Fin ↔ ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
97, 8sylib 217 . . . 4 (𝐴 ∈ Fin → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
106, 9syl 17 . . 3 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
11103adant3 1131 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
12 en2sn 8831 . . . . . . . 8 ((𝑋𝐴𝑥 ∈ V) → {𝑋} ≈ {𝑥})
1312elvd 3439 . . . . . . 7 (𝑋𝐴 → {𝑋} ≈ {𝑥})
14 nnord 7720 . . . . . . . 8 (𝑥 ∈ ω → Ord 𝑥)
15 orddisj 6304 . . . . . . . 8 (Ord 𝑥 → (𝑥 ∩ {𝑥}) = ∅)
1614, 15syl 17 . . . . . . 7 (𝑥 ∈ ω → (𝑥 ∩ {𝑥}) = ∅)
17 incom 4135 . . . . . . . . . 10 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ({𝑋} ∩ (𝐴 ∖ {𝑋}))
18 disjdif 4405 . . . . . . . . . 10 ({𝑋} ∩ (𝐴 ∖ {𝑋})) = ∅
1917, 18eqtri 2766 . . . . . . . . 9 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅
20 unen 8836 . . . . . . . . . 10 ((((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ {𝑋} ≈ {𝑥}) ∧ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2120an4s 657 . . . . . . . . 9 ((((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅) ∧ ({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2219, 21mpanl2 698 . . . . . . . 8 (((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ ({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2322expcom 414 . . . . . . 7 (({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
2413, 16, 23syl2an 596 . . . . . 6 ((𝑋𝐴𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
25243ad2antl3 1186 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
26 difsnid 4743 . . . . . . . . 9 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
27 df-suc 6272 . . . . . . . . . . 11 suc 𝑥 = (𝑥 ∪ {𝑥})
2827eqcomi 2747 . . . . . . . . . 10 (𝑥 ∪ {𝑥}) = suc 𝑥
2928a1i 11 . . . . . . . . 9 (𝑋𝐴 → (𝑥 ∪ {𝑥}) = suc 𝑥)
3026, 29breq12d 5087 . . . . . . . 8 (𝑋𝐴 → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
31303ad2ant3 1134 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
3231adantr 481 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
33 ensym 8789 . . . . . . . . . . 11 (𝐴 ≈ suc 𝑀 → suc 𝑀𝐴)
34 entr 8792 . . . . . . . . . . . . 13 ((suc 𝑀𝐴𝐴 ≈ suc 𝑥) → suc 𝑀 ≈ suc 𝑥)
35 peano2 7737 . . . . . . . . . . . . . 14 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
36 nneneq 8992 . . . . . . . . . . . . . 14 ((suc 𝑀 ∈ ω ∧ suc 𝑥 ∈ ω) → (suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥))
3735, 36sylan2 593 . . . . . . . . . . . . 13 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥))
3834, 37syl5ib 243 . . . . . . . . . . . 12 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → ((suc 𝑀𝐴𝐴 ≈ suc 𝑥) → suc 𝑀 = suc 𝑥))
3938expd 416 . . . . . . . . . . 11 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀𝐴 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
4033, 39syl5 34 . . . . . . . . . 10 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
411, 40sylan 580 . . . . . . . . 9 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
4241imp 407 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
4342an32s 649 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
44433adantl3 1167 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
4532, 44sylbid 239 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) → suc 𝑀 = suc 𝑥))
46 peano4 7739 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
4746biimpd 228 . . . . . 6 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
48473ad2antl1 1184 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
4925, 45, 483syld 60 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥𝑀 = 𝑥))
50 breq2 5078 . . . . 5 (𝑀 = 𝑥 → ((𝐴 ∖ {𝑋}) ≈ 𝑀 ↔ (𝐴 ∖ {𝑋}) ≈ 𝑥))
5150biimprcd 249 . . . 4 ((𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝑀 = 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5249, 51sylcom 30 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5352rexlimdva 3213 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5411, 53mpd 15 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  cin 3886  c0 4256  {csn 4561   class class class wbr 5074  Ord word 6265  suc csuc 6268  ωcom 7712  cen 8730  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-fin 8737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator