![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divneg | Structured version Visualization version GIF version |
Description: Move negative sign inside of a division. (Contributed by NM, 17-Sep-2004.) |
Ref | Expression |
---|---|
divneg | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reccl 11956 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℂ) | |
2 | mulneg1 11726 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (1 / 𝐵) ∈ ℂ) → (-𝐴 · (1 / 𝐵)) = -(𝐴 · (1 / 𝐵))) | |
3 | 1, 2 | sylan2 592 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (-𝐴 · (1 / 𝐵)) = -(𝐴 · (1 / 𝐵))) |
4 | 3 | 3impb 1115 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (-𝐴 · (1 / 𝐵)) = -(𝐴 · (1 / 𝐵))) |
5 | negcl 11536 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
6 | divrec 11965 | . . 3 ⊢ ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (-𝐴 / 𝐵) = (-𝐴 · (1 / 𝐵))) | |
7 | 5, 6 | syl3an1 1163 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (-𝐴 / 𝐵) = (-𝐴 · (1 / 𝐵))) |
8 | divrec 11965 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | |
9 | 8 | negeqd 11530 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = -(𝐴 · (1 / 𝐵))) |
10 | 4, 7, 9 | 3eqtr4rd 2791 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 -cneg 11521 / cdiv 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 |
This theorem is referenced by: divsubdir 11988 divsubdiv 12010 div2neg 12017 divneg2 12018 divnegd 12083 zeo 12729 efi4p 16185 sinneg 16194 tanneg 16196 cos2bnd 16236 cxpsqrtlem 26762 1cubrlem 26902 atancj 26971 efiatan 26973 atantan 26984 atanbndlem 26986 log2cnv 27005 ppiub 27266 quad3 35638 cos2h 37571 tan2h 37572 lhe4.4ex1a 44298 dirkertrigeqlem3 46021 fourierdlem62 46089 fourierdlem103 46130 fourierswlem 46151 enege 47519 onego 47520 0nodd 47893 |
Copyright terms: Public domain | W3C validator |