MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divneg Structured version   Visualization version   GIF version

Theorem divneg 11933
Description: Move negative sign inside of a division. (Contributed by NM, 17-Sep-2004.)
Assertion
Ref Expression
divneg ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))

Proof of Theorem divneg
StepHypRef Expression
1 reccl 11903 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℂ)
2 mulneg1 11673 . . . 4 ((𝐴 ∈ ℂ ∧ (1 / 𝐵) ∈ ℂ) → (-𝐴 · (1 / 𝐵)) = -(𝐴 · (1 / 𝐵)))
31, 2sylan2 593 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (-𝐴 · (1 / 𝐵)) = -(𝐴 · (1 / 𝐵)))
433impb 1114 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (-𝐴 · (1 / 𝐵)) = -(𝐴 · (1 / 𝐵)))
5 negcl 11482 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
6 divrec 11912 . . 3 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (-𝐴 / 𝐵) = (-𝐴 · (1 / 𝐵)))
75, 6syl3an1 1163 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (-𝐴 / 𝐵) = (-𝐴 · (1 / 𝐵)))
8 divrec 11912 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
98negeqd 11476 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = -(𝐴 · (1 / 𝐵)))
104, 7, 93eqtr4rd 2781 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   · cmul 11134  -cneg 11467   / cdiv 11894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895
This theorem is referenced by:  divsubdir  11935  divsubdiv  11957  div2neg  11964  divneg2  11965  divnegd  12030  zeo  12679  efi4p  16155  sinneg  16164  tanneg  16166  cos2bnd  16206  cxpsqrtlem  26663  1cubrlem  26803  atancj  26872  efiatan  26874  atantan  26885  atanbndlem  26887  log2cnv  26906  ppiub  27167  quad3  35692  cos2h  37635  tan2h  37636  lhe4.4ex1a  44353  dirkertrigeqlem3  46129  fourierdlem62  46197  fourierdlem103  46238  fourierswlem  46259  enege  47659  onego  47660  0nodd  48145
  Copyright terms: Public domain W3C validator