MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divneg Structured version   Visualization version   GIF version

Theorem divneg 11695
Description: Move negative sign inside of a division. (Contributed by NM, 17-Sep-2004.)
Assertion
Ref Expression
divneg ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))

Proof of Theorem divneg
StepHypRef Expression
1 reccl 11668 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℂ)
2 mulneg1 11439 . . . 4 ((𝐴 ∈ ℂ ∧ (1 / 𝐵) ∈ ℂ) → (-𝐴 · (1 / 𝐵)) = -(𝐴 · (1 / 𝐵)))
31, 2sylan2 592 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (-𝐴 · (1 / 𝐵)) = -(𝐴 · (1 / 𝐵)))
433impb 1113 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (-𝐴 · (1 / 𝐵)) = -(𝐴 · (1 / 𝐵)))
5 negcl 11249 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
6 divrec 11677 . . 3 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (-𝐴 / 𝐵) = (-𝐴 · (1 / 𝐵)))
75, 6syl3an1 1161 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (-𝐴 / 𝐵) = (-𝐴 · (1 / 𝐵)))
8 divrec 11677 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
98negeqd 11243 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = -(𝐴 · (1 / 𝐵)))
104, 7, 93eqtr4rd 2784 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1537  wcel 2101  wne 2938  (class class class)co 7295  cc 10897  0cc0 10899  1c1 10900   · cmul 10904  -cneg 11234   / cdiv 11660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-po 5505  df-so 5506  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661
This theorem is referenced by:  divsubdir  11697  divsubdiv  11719  div2neg  11726  divneg2  11727  divnegd  11792  zeo  12434  efi4p  15874  sinneg  15883  tanneg  15885  cos2bnd  15925  cxpsqrtlem  25885  1cubrlem  26019  atancj  26088  efiatan  26090  atantan  26101  atanbndlem  26103  log2cnv  26122  ppiub  26380  quad3  33656  cos2h  35796  tan2h  35797  lhe4.4ex1a  41971  dirkertrigeqlem3  43676  fourierdlem62  43744  fourierdlem103  43785  fourierswlem  43806  enege  45137  onego  45138  0nodd  45404
  Copyright terms: Public domain W3C validator