Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulneg1d | Structured version Visualization version GIF version |
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulneg1d | ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mulneg1 11504 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7329 ℂcc 10962 · cmul 10969 -cneg 11299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-ltxr 11107 df-sub 11300 df-neg 11301 |
This theorem is referenced by: divsubdiv 11784 recgt0 11914 xmulneg1 13096 expmulz 13922 discr1 14047 iseraltlem3 15486 incexclem 15639 incexc 15640 mulgass 18828 cphipval 24505 mbfmulc2lem 24909 mbfmulc2 24925 itg2monolem1 25013 itgmulc2 25096 dvrecg 25235 dvmptdiv 25236 dvexp3 25240 dvfsumlem2 25289 aaliou3lem2 25601 advlogexp 25908 logtayl2 25915 dcubic2 26092 dcubic 26094 ftalem5 26324 lgsdilem 26570 2sqlem4 26667 pntrsumo1 26811 pntrlog2bndlem4 26826 brbtwn2 27475 colinearalglem4 27479 axeuclidlem 27532 logdivsqrle 32843 fwddifnp1 34558 itgmulc2nc 35943 lcmineqlem10 40293 3cubeslem3r 40759 pellexlem6 40906 jm2.19lem1 41062 jm2.19lem4 41065 jm2.19 41066 binomcxplemnotnn0 42284 sineq0ALT 42867 mulltgt0 42875 fperiodmul 43167 cosknegpi 43735 itgsinexplem1 43820 stoweidlem13 43879 stoweidlem42 43908 fourierdlem39 44012 fourierdlem41 44014 fourierdlem48 44020 fourierdlem49 44021 fourierdlem64 44036 etransclem46 44146 eenglngeehlnmlem1 46423 eenglngeehlnmlem2 46424 rrx2linest 46428 rrx2linest2 46430 line2 46438 itscnhlc0yqe 46445 itschlc0yqe 46446 itsclc0yqsol 46450 itsclinecirc0b 46460 itsclquadb 46462 |
Copyright terms: Public domain | W3C validator |