![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulneg1d | Structured version Visualization version GIF version |
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulneg1d | ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mulneg1 11696 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 · cmul 11157 -cneg 11490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-sub 11491 df-neg 11492 |
This theorem is referenced by: divsubdiv 11980 recgt0 12110 xmulneg1 13307 expmulz 14145 discr1 14274 iseraltlem3 15716 incexclem 15868 incexc 15869 mulgass 19141 cphipval 25290 mbfmulc2lem 25695 mbfmulc2 25711 itg2monolem1 25799 itgmulc2 25883 dvrecg 26025 dvmptdiv 26026 dvexp3 26030 dvfsumlem2 26081 dvfsumlem2OLD 26082 aaliou3lem2 26399 advlogexp 26711 logtayl2 26718 dcubic2 26901 dcubic 26903 ftalem5 27134 lgsdilem 27382 2sqlem4 27479 pntrsumo1 27623 pntrlog2bndlem4 27638 brbtwn2 28934 colinearalglem4 28938 axeuclidlem 28991 constrrtcc 33740 logdivsqrle 34643 fwddifnp1 36146 itgmulc2nc 37674 lcmineqlem10 42019 3cubeslem3r 42674 pellexlem6 42821 jm2.19lem1 42977 jm2.19lem4 42980 jm2.19 42981 binomcxplemnotnn0 44351 sineq0ALT 44934 mulltgt0 44959 fperiodmul 45254 cosknegpi 45824 itgsinexplem1 45909 stoweidlem13 45968 stoweidlem42 45997 fourierdlem39 46101 fourierdlem41 46103 fourierdlem48 46109 fourierdlem49 46110 fourierdlem64 46125 etransclem46 46235 eenglngeehlnmlem1 48586 eenglngeehlnmlem2 48587 rrx2linest 48591 rrx2linest2 48593 line2 48601 itscnhlc0yqe 48608 itschlc0yqe 48609 itsclc0yqsol 48613 itsclinecirc0b 48623 itsclquadb 48625 |
Copyright terms: Public domain | W3C validator |