Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulneg1d | Structured version Visualization version GIF version |
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulneg1d | ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mulneg1 11341 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 · cmul 10807 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: divsubdiv 11621 recgt0 11751 xmulneg1 12932 expmulz 13757 discr1 13882 iseraltlem3 15323 incexclem 15476 incexc 15477 mulgass 18655 cphipval 24312 mbfmulc2lem 24716 mbfmulc2 24732 itg2monolem1 24820 itgmulc2 24903 dvrecg 25042 dvmptdiv 25043 dvexp3 25047 dvfsumlem2 25096 aaliou3lem2 25408 advlogexp 25715 logtayl2 25722 dcubic2 25899 dcubic 25901 ftalem5 26131 lgsdilem 26377 2sqlem4 26474 pntrsumo1 26618 pntrlog2bndlem4 26633 brbtwn2 27176 colinearalglem4 27180 axeuclidlem 27233 logdivsqrle 32530 fwddifnp1 34394 itgmulc2nc 35772 lcmineqlem10 39974 3cubeslem3r 40425 pellexlem6 40572 jm2.19lem1 40727 jm2.19lem4 40730 jm2.19 40731 binomcxplemnotnn0 41863 sineq0ALT 42446 mulltgt0 42454 fperiodmul 42733 cosknegpi 43300 itgsinexplem1 43385 stoweidlem13 43444 stoweidlem42 43473 fourierdlem39 43577 fourierdlem41 43579 fourierdlem48 43585 fourierdlem49 43586 fourierdlem64 43601 etransclem46 43711 eenglngeehlnmlem1 45971 eenglngeehlnmlem2 45972 rrx2linest 45976 rrx2linest2 45978 line2 45986 itscnhlc0yqe 45993 itschlc0yqe 45994 itsclc0yqsol 45998 itsclinecirc0b 46008 itsclquadb 46010 |
Copyright terms: Public domain | W3C validator |