Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulneg1d | Structured version Visualization version GIF version |
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulneg1d | ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mulneg1 11411 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 · cmul 10876 -cneg 11206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-neg 11208 |
This theorem is referenced by: divsubdiv 11691 recgt0 11821 xmulneg1 13003 expmulz 13829 discr1 13954 iseraltlem3 15395 incexclem 15548 incexc 15549 mulgass 18740 cphipval 24407 mbfmulc2lem 24811 mbfmulc2 24827 itg2monolem1 24915 itgmulc2 24998 dvrecg 25137 dvmptdiv 25138 dvexp3 25142 dvfsumlem2 25191 aaliou3lem2 25503 advlogexp 25810 logtayl2 25817 dcubic2 25994 dcubic 25996 ftalem5 26226 lgsdilem 26472 2sqlem4 26569 pntrsumo1 26713 pntrlog2bndlem4 26728 brbtwn2 27273 colinearalglem4 27277 axeuclidlem 27330 logdivsqrle 32630 fwddifnp1 34467 itgmulc2nc 35845 lcmineqlem10 40046 3cubeslem3r 40509 pellexlem6 40656 jm2.19lem1 40811 jm2.19lem4 40814 jm2.19 40815 binomcxplemnotnn0 41974 sineq0ALT 42557 mulltgt0 42565 fperiodmul 42843 cosknegpi 43410 itgsinexplem1 43495 stoweidlem13 43554 stoweidlem42 43583 fourierdlem39 43687 fourierdlem41 43689 fourierdlem48 43695 fourierdlem49 43696 fourierdlem64 43711 etransclem46 43821 eenglngeehlnmlem1 46083 eenglngeehlnmlem2 46084 rrx2linest 46088 rrx2linest2 46090 line2 46098 itscnhlc0yqe 46105 itschlc0yqe 46106 itsclc0yqsol 46110 itsclinecirc0b 46120 itsclquadb 46122 |
Copyright terms: Public domain | W3C validator |