![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulneg1d | Structured version Visualization version GIF version |
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulneg1d | ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mulneg1 11726 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 · cmul 11189 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 |
This theorem is referenced by: divsubdiv 12010 recgt0 12140 xmulneg1 13331 expmulz 14159 discr1 14288 iseraltlem3 15732 incexclem 15884 incexc 15885 mulgass 19151 cphipval 25296 mbfmulc2lem 25701 mbfmulc2 25717 itg2monolem1 25805 itgmulc2 25889 dvrecg 26031 dvmptdiv 26032 dvexp3 26036 dvfsumlem2 26087 dvfsumlem2OLD 26088 aaliou3lem2 26403 advlogexp 26715 logtayl2 26722 dcubic2 26905 dcubic 26907 ftalem5 27138 lgsdilem 27386 2sqlem4 27483 pntrsumo1 27627 pntrlog2bndlem4 27642 brbtwn2 28938 colinearalglem4 28942 axeuclidlem 28995 constrrtcc 33726 logdivsqrle 34627 fwddifnp1 36129 itgmulc2nc 37648 lcmineqlem10 41995 3cubeslem3r 42643 pellexlem6 42790 jm2.19lem1 42946 jm2.19lem4 42949 jm2.19 42950 binomcxplemnotnn0 44325 sineq0ALT 44908 mulltgt0 44922 fperiodmul 45219 cosknegpi 45790 itgsinexplem1 45875 stoweidlem13 45934 stoweidlem42 45963 fourierdlem39 46067 fourierdlem41 46069 fourierdlem48 46075 fourierdlem49 46076 fourierdlem64 46091 etransclem46 46201 eenglngeehlnmlem1 48471 eenglngeehlnmlem2 48472 rrx2linest 48476 rrx2linest2 48478 line2 48486 itscnhlc0yqe 48493 itschlc0yqe 48494 itsclc0yqsol 48498 itsclinecirc0b 48508 itsclquadb 48510 |
Copyright terms: Public domain | W3C validator |