MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmlogdmgm Structured version   Visualization version   GIF version

Theorem dmlogdmgm 26934
Description: If 𝐴 is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.)
Assertion
Ref Expression
dmlogdmgm (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))

Proof of Theorem dmlogdmgm
StepHypRef Expression
1 eldifi 4094 . 2 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ ℂ)
2 simpr 484 . . . 4 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 ∈ ℕ0)
32nn0ge0d 12506 . . 3 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 ≤ -𝐴)
41adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℂ)
52nn0red 12504 . . . . . . . 8 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 ∈ ℝ)
64, 5negrebd 11532 . . . . . . 7 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
7 eqid 2729 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
87ellogdm 26548 . . . . . . . . 9 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
98simprbi 496 . . . . . . . 8 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))
109imp 406 . . . . . . 7 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ+)
116, 10syldan 591 . . . . . 6 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ+)
1211rpgt0d 12998 . . . . 5 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 < 𝐴)
136lt0neg2d 11748 . . . . 5 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → (0 < 𝐴 ↔ -𝐴 < 0))
1412, 13mpbid 232 . . . 4 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 < 0)
15 0red 11177 . . . . 5 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 ∈ ℝ)
165, 15ltnled 11321 . . . 4 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴))
1714, 16mpbid 232 . . 3 ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → ¬ 0 ≤ -𝐴)
183, 17pm2.65da 816 . 2 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ -𝐴 ∈ ℕ0)
19 eldmgm 26932 . 2 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
201, 18, 19sylanbrc 583 1 (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  cdif 3911   class class class wbr 5107  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  -∞cmnf 11206   < clt 11208  cle 11209  -cneg 11406  cn 12186  0cn0 12442  cz 12529  +crp 12951  (,]cioc 13307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-rp 12952  df-ioc 13311
This theorem is referenced by:  rpdmgm  26935
  Copyright terms: Public domain W3C validator