|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dmlogdmgm | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) | 
| Ref | Expression | 
|---|---|
| dmlogdmgm | ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldifi 4130 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ ℂ) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 ∈ ℕ0) | |
| 3 | 2 | nn0ge0d 12592 | . . 3 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 ≤ -𝐴) | 
| 4 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℂ) | 
| 5 | 2 | nn0red 12590 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 ∈ ℝ) | 
| 6 | 4, 5 | negrebd 11620 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ) | 
| 7 | eqid 2736 | . . . . . . . . . 10 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
| 8 | 7 | ellogdm 26682 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) | 
| 9 | 8 | simprbi 496 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) | 
| 10 | 9 | imp 406 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ+) | 
| 11 | 6, 10 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ+) | 
| 12 | 11 | rpgt0d 13081 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 < 𝐴) | 
| 13 | 6 | lt0neg2d 11834 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → (0 < 𝐴 ↔ -𝐴 < 0)) | 
| 14 | 12, 13 | mpbid 232 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 < 0) | 
| 15 | 0red 11265 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 ∈ ℝ) | |
| 16 | 5, 15 | ltnled 11409 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) | 
| 17 | 14, 16 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → ¬ 0 ≤ -𝐴) | 
| 18 | 3, 17 | pm2.65da 816 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ -𝐴 ∈ ℕ0) | 
| 19 | eldmgm 27066 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | |
| 20 | 1, 18, 19 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2107 ∖ cdif 3947 class class class wbr 5142 (class class class)co 7432 ℂcc 11154 ℝcr 11155 0cc0 11156 -∞cmnf 11294 < clt 11296 ≤ cle 11297 -cneg 11494 ℕcn 12267 ℕ0cn0 12528 ℤcz 12615 ℝ+crp 13035 (,]cioc 13389 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-rp 13036 df-ioc 13393 | 
| This theorem is referenced by: rpdmgm 27069 | 
| Copyright terms: Public domain | W3C validator |