| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmlogdmgm | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| Ref | Expression |
|---|---|
| dmlogdmgm | ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4078 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ ℂ) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 ∈ ℕ0) | |
| 3 | 2 | nn0ge0d 12445 | . . 3 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 ≤ -𝐴) |
| 4 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℂ) |
| 5 | 2 | nn0red 12443 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 ∈ ℝ) |
| 6 | 4, 5 | negrebd 11471 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ) |
| 7 | eqid 2731 | . . . . . . . . . 10 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
| 8 | 7 | ellogdm 26575 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
| 9 | 8 | simprbi 496 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
| 10 | 9 | imp 406 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ+) |
| 11 | 6, 10 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ+) |
| 12 | 11 | rpgt0d 12937 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 < 𝐴) |
| 13 | 6 | lt0neg2d 11687 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → (0 < 𝐴 ↔ -𝐴 < 0)) |
| 14 | 12, 13 | mpbid 232 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 < 0) |
| 15 | 0red 11115 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 ∈ ℝ) | |
| 16 | 5, 15 | ltnled 11260 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) |
| 17 | 14, 16 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → ¬ 0 ≤ -𝐴) |
| 18 | 3, 17 | pm2.65da 816 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ -𝐴 ∈ ℕ0) |
| 19 | eldmgm 26959 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | |
| 20 | 1, 18, 19 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ∖ cdif 3894 class class class wbr 5089 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 -∞cmnf 11144 < clt 11146 ≤ cle 11147 -cneg 11345 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 ℝ+crp 12890 (,]cioc 13246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-rp 12891 df-ioc 13250 |
| This theorem is referenced by: rpdmgm 26962 |
| Copyright terms: Public domain | W3C validator |