![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmlogdmgm | Structured version Visualization version GIF version |
Description: If 𝐴 is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
Ref | Expression |
---|---|
dmlogdmgm | ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4122 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ ℂ) | |
2 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 ∈ ℕ0) | |
3 | 2 | nn0ge0d 12559 | . . 3 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 ≤ -𝐴) |
4 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℂ) |
5 | 2 | nn0red 12557 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 ∈ ℝ) |
6 | 4, 5 | negrebd 11594 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ) |
7 | eqid 2728 | . . . . . . . . . 10 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
8 | 7 | ellogdm 26566 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
9 | 8 | simprbi 496 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
10 | 9 | imp 406 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ+) |
11 | 6, 10 | syldan 590 | . . . . . 6 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ+) |
12 | 11 | rpgt0d 13045 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 < 𝐴) |
13 | 6 | lt0neg2d 11808 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → (0 < 𝐴 ↔ -𝐴 < 0)) |
14 | 12, 13 | mpbid 231 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 < 0) |
15 | 0red 11241 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 ∈ ℝ) | |
16 | 5, 15 | ltnled 11385 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) |
17 | 14, 16 | mpbid 231 | . . 3 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → ¬ 0 ≤ -𝐴) |
18 | 3, 17 | pm2.65da 816 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ -𝐴 ∈ ℕ0) |
19 | eldmgm 26947 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | |
20 | 1, 18, 19 | sylanbrc 582 | 1 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2099 ∖ cdif 3942 class class class wbr 5142 (class class class)co 7414 ℂcc 11130 ℝcr 11131 0cc0 11132 -∞cmnf 11270 < clt 11272 ≤ cle 11273 -cneg 11469 ℕcn 12236 ℕ0cn0 12496 ℤcz 12582 ℝ+crp 13000 (,]cioc 13351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-rp 13001 df-ioc 13355 |
This theorem is referenced by: rpdmgm 26950 |
Copyright terms: Public domain | W3C validator |