![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmlogdmgm | Structured version Visualization version GIF version |
Description: If 𝐴 is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
Ref | Expression |
---|---|
dmlogdmgm | ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4127 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ ℂ) | |
2 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 ∈ ℕ0) | |
3 | 2 | nn0ge0d 12540 | . . 3 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 ≤ -𝐴) |
4 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℂ) |
5 | 2 | nn0red 12538 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 ∈ ℝ) |
6 | 4, 5 | negrebd 11575 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ) |
7 | eqid 2731 | . . . . . . . . . 10 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
8 | 7 | ellogdm 26380 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
9 | 8 | simprbi 496 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
10 | 9 | imp 406 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ+) |
11 | 6, 10 | syldan 590 | . . . . . 6 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ+) |
12 | 11 | rpgt0d 13024 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 < 𝐴) |
13 | 6 | lt0neg2d 11789 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → (0 < 𝐴 ↔ -𝐴 < 0)) |
14 | 12, 13 | mpbid 231 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → -𝐴 < 0) |
15 | 0red 11222 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → 0 ∈ ℝ) | |
16 | 5, 15 | ltnled 11366 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) |
17 | 14, 16 | mpbid 231 | . . 3 ⊢ ((𝐴 ∈ (ℂ ∖ (-∞(,]0)) ∧ -𝐴 ∈ ℕ0) → ¬ 0 ≤ -𝐴) |
18 | 3, 17 | pm2.65da 814 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → ¬ -𝐴 ∈ ℕ0) |
19 | eldmgm 26759 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | |
20 | 1, 18, 19 | sylanbrc 582 | 1 ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2105 ∖ cdif 3946 class class class wbr 5149 (class class class)co 7412 ℂcc 11111 ℝcr 11112 0cc0 11113 -∞cmnf 11251 < clt 11253 ≤ cle 11254 -cneg 11450 ℕcn 12217 ℕ0cn0 12477 ℤcz 12563 ℝ+crp 12979 (,]cioc 13330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-rp 12980 df-ioc 13334 |
This theorem is referenced by: rpdmgm 26762 |
Copyright terms: Public domain | W3C validator |