Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnzi | Structured version Visualization version GIF version |
Description: A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nnzi.1 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
nnzi | ⊢ 𝑁 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssz 12323 | . 2 ⊢ ℕ ⊆ ℤ | |
2 | nnzi.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | sselii 3922 | 1 ⊢ 𝑁 ∈ ℤ |
Copyright terms: Public domain | W3C validator |