| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnzi | Structured version Visualization version GIF version | ||
| Description: A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| nnzi.1 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnzi | ⊢ 𝑁 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 12635 | . 2 ⊢ ℕ ⊆ ℤ | |
| 2 | nnzi.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | sselii 3980 | 1 ⊢ 𝑁 ∈ ℤ |
| Copyright terms: Public domain | W3C validator |