Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpmadumatpolylem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for cpmadumatpoly 22103. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
cpmadumatpoly.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmadumatpoly.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmadumatpoly.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmadumatpoly.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmadumatpoly.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmadumatpoly.r | ⊢ × = (.r‘𝑌) |
cpmadumatpoly.m0 | ⊢ − = (-g‘𝑌) |
cpmadumatpoly.0 | ⊢ 0 = (0g‘𝑌) |
cpmadumatpoly.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
cpmadumatpoly.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpmadumatpoly.m1 | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmadumatpoly.1 | ⊢ 1 = (1r‘𝑌) |
cpmadumatpoly.z | ⊢ 𝑍 = (var1‘𝑅) |
cpmadumatpoly.d | ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) |
cpmadumatpoly.j | ⊢ 𝐽 = (𝑁 maAdju 𝑃) |
cpmadumatpoly.w | ⊢ 𝑊 = (Base‘𝑌) |
cpmadumatpoly.q | ⊢ 𝑄 = (Poly1‘𝐴) |
cpmadumatpoly.x | ⊢ 𝑋 = (var1‘𝐴) |
cpmadumatpoly.m2 | ⊢ ∗ = ( ·𝑠 ‘𝑄) |
cpmadumatpoly.e | ⊢ ↑ = (.g‘(mulGrp‘𝑄)) |
cpmadumatpoly.u | ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) |
Ref | Expression |
---|---|
cpmadumatpolylem2 | ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈 ∘ 𝐺) finSupp (0g‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6824 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (0g‘𝐴) ∈ V) | |
2 | crngring 19862 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
3 | 2 | anim2i 617 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
4 | 3 | 3adant3 1131 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
5 | 4 | ad2antrr 723 | . . 3 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
6 | cpmadumatpoly.s | . . . 4 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
7 | cpmadumatpoly.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | cpmadumatpoly.y | . . . 4 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
9 | 6, 7, 8 | 0elcpmat 21942 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝑌) ∈ 𝑆) |
10 | 5, 9 | syl 17 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (0g‘𝑌) ∈ 𝑆) |
11 | cpmadumatpoly.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
12 | cpmadumatpoly.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
13 | cpmadumatpoly.r | . . . . 5 ⊢ × = (.r‘𝑌) | |
14 | cpmadumatpoly.m0 | . . . . 5 ⊢ − = (-g‘𝑌) | |
15 | cpmadumatpoly.0 | . . . . 5 ⊢ 0 = (0g‘𝑌) | |
16 | cpmadumatpoly.t | . . . . 5 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
17 | cpmadumatpoly.g | . . . . 5 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
18 | 11, 12, 7, 8, 13, 14, 15, 16, 17, 6 | chfacfisfcpmat 22075 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) |
19 | 2, 18 | syl3anl2 1412 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) |
20 | 19 | anassrs 468 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝐺:ℕ0⟶𝑆) |
21 | cpmadumatpoly.u | . . . 4 ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) | |
22 | 11, 12, 6, 21 | cpm2mf 21972 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈:𝑆⟶𝐵) |
23 | 5, 22 | syl 17 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑈:𝑆⟶𝐵) |
24 | ssidd 3953 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑆 ⊆ 𝑆) | |
25 | nn0ex 12309 | . . 3 ⊢ ℕ0 ∈ V | |
26 | 25 | a1i 11 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → ℕ0 ∈ V) |
27 | 6 | ovexi 7347 | . . 3 ⊢ 𝑆 ∈ V |
28 | 27 | a1i 11 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑆 ∈ V) |
29 | 11, 12, 7, 8, 13, 14, 15, 16, 17 | chfacffsupp 22076 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺 finSupp (0g‘𝑌)) |
30 | 29 | anassrs 468 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝐺 finSupp (0g‘𝑌)) |
31 | eqid 2737 | . . . . . 6 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
32 | eqid 2737 | . . . . . 6 ⊢ (0g‘𝑌) = (0g‘𝑌) | |
33 | 11, 21, 7, 8, 31, 32 | m2cpminv0 21981 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
34 | 2, 33 | sylan2 593 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
35 | 34 | 3adant3 1131 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
36 | 35 | ad2antrr 723 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
37 | 1, 10, 20, 23, 24, 26, 28, 30, 36 | fsuppcor 9231 | 1 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈 ∘ 𝐺) finSupp (0g‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ifcif 4469 class class class wbr 5085 ↦ cmpt 5168 ∘ ccom 5609 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 ↑m cmap 8661 Fincfn 8779 finSupp cfsupp 9196 0cc0 10941 1c1 10942 + caddc 10944 < clt 11079 − cmin 11275 ℕcn 12043 ℕ0cn0 12303 ...cfz 13309 Basecbs 16979 .rcmulr 17030 ·𝑠 cvsca 17033 0gc0g 17217 -gcsg 18646 .gcmg 18767 mulGrpcmgp 19787 1rcur 19804 Ringcrg 19850 CRingccrg 19851 var1cv1 21418 Poly1cpl1 21419 Mat cmat 21625 maAdju cmadu 21852 ConstPolyMat ccpmat 21923 matToPolyMat cmat2pmat 21924 cPolyMatToMat ccpmat2mat 21925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-ot 4578 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-ofr 7572 df-om 7756 df-1st 7874 df-2nd 7875 df-supp 8023 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-pm 8664 df-ixp 8732 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fsupp 9197 df-sup 9269 df-oi 9337 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-fz 13310 df-fzo 13453 df-seq 13792 df-hash 14115 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-sca 17045 df-vsca 17046 df-ip 17047 df-tset 17048 df-ple 17049 df-ds 17051 df-hom 17053 df-cco 17054 df-0g 17219 df-gsum 17220 df-prds 17225 df-pws 17227 df-mre 17362 df-mrc 17363 df-acs 17365 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-mhm 18497 df-submnd 18498 df-grp 18647 df-minusg 18648 df-sbg 18649 df-mulg 18768 df-subg 18819 df-ghm 18899 df-cntz 18990 df-cmn 19455 df-abl 19456 df-mgp 19788 df-ur 19805 df-srg 19809 df-ring 19852 df-cring 19853 df-subrg 20093 df-lmod 20196 df-lss 20265 df-sra 20505 df-rgmod 20506 df-dsmm 21010 df-frlm 21025 df-ascl 21133 df-psr 21183 df-mvr 21184 df-mpl 21185 df-opsr 21187 df-psr1 21422 df-vr1 21423 df-ply1 21424 df-coe1 21425 df-mamu 21604 df-mat 21626 df-cpmat 21926 df-mat2pmat 21927 df-cpmat2mat 21928 |
This theorem is referenced by: cpmadumatpoly 22103 chcoeffeqlem 22105 |
Copyright terms: Public domain | W3C validator |