MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredg3 Structured version   Visualization version   GIF version

Theorem usgredg3 29161
Description: The value of the "edge function" of a simple graph is a set containing two elements (the endvertices of the corresponding edge). (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.)
Hypotheses
Ref Expression
usgredg3.v 𝑉 = (Vtx‘𝐺)
usgredg3.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgredg3 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦 ∧ (𝐸𝑋) = {𝑥, 𝑦}))
Distinct variable groups:   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦

Proof of Theorem usgredg3
StepHypRef Expression
1 usgrfun 29103 . . . . 5 (𝐺 ∈ USGraph → Fun (iEdg‘𝐺))
2 usgredg3.e . . . . . 6 𝐸 = (iEdg‘𝐺)
32funeqi 6503 . . . . 5 (Fun 𝐸 ↔ Fun (iEdg‘𝐺))
41, 3sylibr 234 . . . 4 (𝐺 ∈ USGraph → Fun 𝐸)
5 fvelrn 7010 . . . 4 ((Fun 𝐸𝑋 ∈ dom 𝐸) → (𝐸𝑋) ∈ ran 𝐸)
64, 5sylan 580 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸𝑋) ∈ ran 𝐸)
7 edgval 28994 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
87a1i 11 . . . . 5 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
92eqcomi 2738 . . . . . 6 (iEdg‘𝐺) = 𝐸
109rneqi 5879 . . . . 5 ran (iEdg‘𝐺) = ran 𝐸
118, 10eqtrdi 2780 . . . 4 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐸)
1211adantr 480 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (Edg‘𝐺) = ran 𝐸)
136, 12eleqtrrd 2831 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸𝑋) ∈ (Edg‘𝐺))
14 usgredg3.v . . 3 𝑉 = (Vtx‘𝐺)
15 eqid 2729 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
1614, 15usgredg 29144 . 2 ((𝐺 ∈ USGraph ∧ (𝐸𝑋) ∈ (Edg‘𝐺)) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦 ∧ (𝐸𝑋) = {𝑥, 𝑦}))
1713, 16syldan 591 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ∃𝑥𝑉𝑦𝑉 (𝑥𝑦 ∧ (𝐸𝑋) = {𝑥, 𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {cpr 4579  dom cdm 5619  ran crn 5620  Fun wfun 6476  cfv 6482  Vtxcvtx 28941  iEdgciedg 28942  Edgcedg 28992  USGraphcusgr 29094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-edg 28993  df-umgr 29028  df-usgr 29096
This theorem is referenced by:  usgredg4  29162
  Copyright terms: Public domain W3C validator