Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgredg3 | Structured version Visualization version GIF version |
Description: The value of the "edge function" of a simple graph is a set containing two elements (the endvertices of the corresponding edge). (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.) |
Ref | Expression |
---|---|
usgredg3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
usgredg3.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgredg3 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ (𝐸‘𝑋) = {𝑥, 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrfun 27431 | . . . . 5 ⊢ (𝐺 ∈ USGraph → Fun (iEdg‘𝐺)) | |
2 | usgredg3.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 2 | funeqi 6439 | . . . . 5 ⊢ (Fun 𝐸 ↔ Fun (iEdg‘𝐺)) |
4 | 1, 3 | sylibr 233 | . . . 4 ⊢ (𝐺 ∈ USGraph → Fun 𝐸) |
5 | fvelrn 6936 | . . . 4 ⊢ ((Fun 𝐸 ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ∈ ran 𝐸) | |
6 | 4, 5 | sylan 579 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ∈ ran 𝐸) |
7 | edgval 27322 | . . . . . 6 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
9 | 2 | eqcomi 2747 | . . . . . 6 ⊢ (iEdg‘𝐺) = 𝐸 |
10 | 9 | rneqi 5835 | . . . . 5 ⊢ ran (iEdg‘𝐺) = ran 𝐸 |
11 | 8, 10 | eqtrdi 2795 | . . . 4 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐸) |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (Edg‘𝐺) = ran 𝐸) |
13 | 6, 12 | eleqtrrd 2842 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ∈ (Edg‘𝐺)) |
14 | usgredg3.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
15 | eqid 2738 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
16 | 14, 15 | usgredg 27469 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐸‘𝑋) ∈ (Edg‘𝐺)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ (𝐸‘𝑋) = {𝑥, 𝑦})) |
17 | 13, 16 | syldan 590 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑥 ≠ 𝑦 ∧ (𝐸‘𝑋) = {𝑥, 𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {cpr 4560 dom cdm 5580 ran crn 5581 Fun wfun 6412 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 Edgcedg 27320 USGraphcusgr 27422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-edg 27321 df-umgr 27356 df-usgr 27424 |
This theorem is referenced by: usgredg4 27487 |
Copyright terms: Public domain | W3C validator |