| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsaddval | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024.) |
| Ref | Expression |
|---|---|
| evlsaddval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlsaddval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
| evlsaddval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsaddval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsaddval.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlsaddval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| evlsaddval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsaddval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsaddval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| evlsaddval.m | ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) |
| evlsaddval.n | ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) |
| evlsaddval.g | ⊢ ✚ = (+g‘𝑃) |
| evlsaddval.f | ⊢ + = (+g‘𝑆) |
| Ref | Expression |
|---|---|
| evlsaddval | ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsaddval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 2 | evlsaddval.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 3 | evlsaddval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 4 | evlsaddval.q | . . . . . . 7 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 5 | evlsaddval.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
| 6 | evlsaddval.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 7 | eqid 2731 | . . . . . . 7 ⊢ (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
| 8 | evlsaddval.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
| 9 | 4, 5, 6, 7, 8 | evlsrhm 22021 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 10 | 1, 2, 3, 9 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 11 | rhmghm 20399 | . . . . 5 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 13 | ghmgrp1 19128 | . . . 4 ⊢ (𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑃 ∈ Grp) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 15 | evlsaddval.m | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) | |
| 16 | 15 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| 17 | evlsaddval.n | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) | |
| 18 | 17 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| 19 | evlsaddval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 20 | evlsaddval.g | . . . 4 ⊢ ✚ = (+g‘𝑃) | |
| 21 | 19, 20 | grpcl 18851 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑀 ✚ 𝑁) ∈ 𝐵) |
| 22 | 14, 16, 18, 21 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑀 ✚ 𝑁) ∈ 𝐵) |
| 23 | eqid 2731 | . . . . . . 7 ⊢ (+g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (+g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 24 | 19, 20, 23 | ghmlin 19131 | . . . . . 6 ⊢ ((𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼))) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 25 | 12, 16, 18, 24 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 26 | eqid 2731 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 27 | ovexd 7381 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | |
| 28 | 19, 26 | rhmf 20400 | . . . . . . . 8 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 29 | 10, 28 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 30 | 29, 16 | ffvelcdmd 7018 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 31 | 29, 18 | ffvelcdmd 7018 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑁) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 32 | evlsaddval.f | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 33 | 7, 26, 2, 27, 30, 31, 32, 23 | pwsplusgval 17391 | . . . . 5 ⊢ (𝜑 → ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁)) = ((𝑄‘𝑀) ∘f + (𝑄‘𝑁))) |
| 34 | 25, 33 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀) ∘f + (𝑄‘𝑁))) |
| 35 | 34 | fveq1d 6824 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴)) |
| 36 | 7, 8, 26, 2, 27, 30 | pwselbas 17390 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑀):(𝐾 ↑m 𝐼)⟶𝐾) |
| 37 | 36 | ffnd 6652 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑀) Fn (𝐾 ↑m 𝐼)) |
| 38 | 7, 8, 26, 2, 27, 31 | pwselbas 17390 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑁):(𝐾 ↑m 𝐼)⟶𝐾) |
| 39 | 38 | ffnd 6652 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) |
| 40 | evlsaddval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 41 | fnfvof 7627 | . . . 4 ⊢ ((((𝑄‘𝑀) Fn (𝐾 ↑m 𝐼) ∧ (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) ∧ ((𝐾 ↑m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾 ↑m 𝐼))) → (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴))) | |
| 42 | 37, 39, 27, 40, 41 | syl22anc 838 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴))) |
| 43 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑀)‘𝐴) = 𝑉) |
| 44 | 17 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑁)‘𝐴) = 𝑊) |
| 45 | 43, 44 | oveq12d 7364 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴)) = (𝑉 + 𝑊)) |
| 46 | 35, 42, 45 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊)) |
| 47 | 22, 46 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ↑m cmap 8750 Basecbs 17117 ↾s cress 17138 +gcplusg 17158 ↑s cpws 17347 Grpcgrp 18843 GrpHom cghm 19122 CRingccrg 20150 RingHom crh 20385 SubRingcsubrg 20482 mPoly cmpl 21841 evalSub ces 22005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20459 df-subrg 20483 df-lmod 20793 df-lss 20863 df-lsp 20903 df-assa 21788 df-asp 21789 df-ascl 21790 df-psr 21844 df-mvr 21845 df-mpl 21846 df-evls 22007 |
| This theorem is referenced by: evlsmaprhm 42602 |
| Copyright terms: Public domain | W3C validator |