Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsaddval | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024.) |
Ref | Expression |
---|---|
evlsaddval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlsaddval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
evlsaddval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsaddval.k | ⊢ 𝐾 = (Base‘𝑆) |
evlsaddval.b | ⊢ 𝐵 = (Base‘𝑃) |
evlsaddval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
evlsaddval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsaddval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsaddval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
evlsaddval.m | ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) |
evlsaddval.n | ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) |
evlsaddval.g | ⊢ ✚ = (+g‘𝑃) |
evlsaddval.f | ⊢ + = (+g‘𝑆) |
Ref | Expression |
---|---|
evlsaddval | ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsaddval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
2 | evlsaddval.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
3 | evlsaddval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
4 | evlsaddval.q | . . . . . . 7 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
5 | evlsaddval.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
6 | evlsaddval.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
7 | eqid 2738 | . . . . . . 7 ⊢ (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
8 | evlsaddval.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
9 | 4, 5, 6, 7, 8 | evlsrhm 21298 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
10 | 1, 2, 3, 9 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
11 | rhmghm 19969 | . . . . 5 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
13 | ghmgrp1 18836 | . . . 4 ⊢ (𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑃 ∈ Grp) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
15 | evlsaddval.m | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) | |
16 | 15 | simpld 495 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
17 | evlsaddval.n | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) | |
18 | 17 | simpld 495 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
19 | evlsaddval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
20 | evlsaddval.g | . . . 4 ⊢ ✚ = (+g‘𝑃) | |
21 | 19, 20 | grpcl 18585 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑀 ✚ 𝑁) ∈ 𝐵) |
22 | 14, 16, 18, 21 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑀 ✚ 𝑁) ∈ 𝐵) |
23 | eqid 2738 | . . . . . . 7 ⊢ (+g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (+g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
24 | 19, 20, 23 | ghmlin 18839 | . . . . . 6 ⊢ ((𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼))) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
25 | 12, 16, 18, 24 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
26 | eqid 2738 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
27 | ovexd 7310 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | |
28 | 19, 26 | rhmf 19970 | . . . . . . . 8 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
29 | 10, 28 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
30 | 29, 16 | ffvelrnd 6962 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
31 | 29, 18 | ffvelrnd 6962 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑁) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
32 | evlsaddval.f | . . . . . 6 ⊢ + = (+g‘𝑆) | |
33 | 7, 26, 2, 27, 30, 31, 32, 23 | pwsplusgval 17201 | . . . . 5 ⊢ (𝜑 → ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁)) = ((𝑄‘𝑀) ∘f + (𝑄‘𝑁))) |
34 | 25, 33 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀) ∘f + (𝑄‘𝑁))) |
35 | 34 | fveq1d 6776 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴)) |
36 | 7, 8, 26, 2, 27, 30 | pwselbas 17200 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑀):(𝐾 ↑m 𝐼)⟶𝐾) |
37 | 36 | ffnd 6601 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑀) Fn (𝐾 ↑m 𝐼)) |
38 | 7, 8, 26, 2, 27, 31 | pwselbas 17200 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑁):(𝐾 ↑m 𝐼)⟶𝐾) |
39 | 38 | ffnd 6601 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) |
40 | evlsaddval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
41 | fnfvof 7550 | . . . 4 ⊢ ((((𝑄‘𝑀) Fn (𝐾 ↑m 𝐼) ∧ (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) ∧ ((𝐾 ↑m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾 ↑m 𝐼))) → (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴))) | |
42 | 37, 39, 27, 40, 41 | syl22anc 836 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴))) |
43 | 15 | simprd 496 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑀)‘𝐴) = 𝑉) |
44 | 17 | simprd 496 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑁)‘𝐴) = 𝑊) |
45 | 43, 44 | oveq12d 7293 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴)) = (𝑉 + 𝑊)) |
46 | 35, 42, 45 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊)) |
47 | 22, 46 | jca 512 | 1 ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 ↑m cmap 8615 Basecbs 16912 ↾s cress 16941 +gcplusg 16962 ↑s cpws 17157 Grpcgrp 18577 GrpHom cghm 18831 CRingccrg 19784 RingHom crh 19956 SubRingcsubrg 20020 mPoly cmpl 21109 evalSub ces 21280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-srg 19742 df-ring 19785 df-cring 19786 df-rnghom 19959 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-assa 21060 df-asp 21061 df-ascl 21062 df-psr 21112 df-mvr 21113 df-mpl 21114 df-evls 21282 |
This theorem is referenced by: mhphf 40285 |
Copyright terms: Public domain | W3C validator |