Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsaddval Structured version   Visualization version   GIF version

Theorem evlsaddval 39817
Description: Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024.)
Hypotheses
Ref Expression
evlsaddval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsaddval.p 𝑃 = (𝐼 mPoly 𝑈)
evlsaddval.u 𝑈 = (𝑆s 𝑅)
evlsaddval.k 𝐾 = (Base‘𝑆)
evlsaddval.b 𝐵 = (Base‘𝑃)
evlsaddval.i (𝜑𝐼𝑍)
evlsaddval.s (𝜑𝑆 ∈ CRing)
evlsaddval.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsaddval.a (𝜑𝐴 ∈ (𝐾m 𝐼))
evlsaddval.m (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
evlsaddval.n (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))
evlsaddval.g = (+g𝑃)
evlsaddval.f + = (+g𝑆)
Assertion
Ref Expression
evlsaddval (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 + 𝑊)))

Proof of Theorem evlsaddval
StepHypRef Expression
1 evlsaddval.i . . . . . 6 (𝜑𝐼𝑍)
2 evlsaddval.s . . . . . 6 (𝜑𝑆 ∈ CRing)
3 evlsaddval.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlsaddval.q . . . . . . 7 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 evlsaddval.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑈)
6 evlsaddval.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
7 eqid 2758 . . . . . . 7 (𝑆s (𝐾m 𝐼)) = (𝑆s (𝐾m 𝐼))
8 evlsaddval.k . . . . . . 7 𝐾 = (Base‘𝑆)
94, 5, 6, 7, 8evlsrhm 20864 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
101, 2, 3, 9syl3anc 1368 . . . . 5 (𝜑𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
11 rhmghm 19561 . . . . 5 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑄 ∈ (𝑃 GrpHom (𝑆s (𝐾m 𝐼))))
1210, 11syl 17 . . . 4 (𝜑𝑄 ∈ (𝑃 GrpHom (𝑆s (𝐾m 𝐼))))
13 ghmgrp1 18440 . . . 4 (𝑄 ∈ (𝑃 GrpHom (𝑆s (𝐾m 𝐼))) → 𝑃 ∈ Grp)
1412, 13syl 17 . . 3 (𝜑𝑃 ∈ Grp)
15 evlsaddval.m . . . 4 (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
1615simpld 498 . . 3 (𝜑𝑀𝐵)
17 evlsaddval.n . . . 4 (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))
1817simpld 498 . . 3 (𝜑𝑁𝐵)
19 evlsaddval.b . . . 4 𝐵 = (Base‘𝑃)
20 evlsaddval.g . . . 4 = (+g𝑃)
2119, 20grpcl 18190 . . 3 ((𝑃 ∈ Grp ∧ 𝑀𝐵𝑁𝐵) → (𝑀 𝑁) ∈ 𝐵)
2214, 16, 18, 21syl3anc 1368 . 2 (𝜑 → (𝑀 𝑁) ∈ 𝐵)
23 eqid 2758 . . . . . . 7 (+g‘(𝑆s (𝐾m 𝐼))) = (+g‘(𝑆s (𝐾m 𝐼)))
2419, 20, 23ghmlin 18443 . . . . . 6 ((𝑄 ∈ (𝑃 GrpHom (𝑆s (𝐾m 𝐼))) ∧ 𝑀𝐵𝑁𝐵) → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀)(+g‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)))
2512, 16, 18, 24syl3anc 1368 . . . . 5 (𝜑 → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀)(+g‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)))
26 eqid 2758 . . . . . 6 (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (𝐾m 𝐼)))
27 ovexd 7191 . . . . . 6 (𝜑 → (𝐾m 𝐼) ∈ V)
2819, 26rhmf 19562 . . . . . . . 8 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
2910, 28syl 17 . . . . . . 7 (𝜑𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
3029, 16ffvelrnd 6849 . . . . . 6 (𝜑 → (𝑄𝑀) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
3129, 18ffvelrnd 6849 . . . . . 6 (𝜑 → (𝑄𝑁) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
32 evlsaddval.f . . . . . 6 + = (+g𝑆)
337, 26, 2, 27, 30, 31, 32, 23pwsplusgval 16834 . . . . 5 (𝜑 → ((𝑄𝑀)(+g‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)) = ((𝑄𝑀) ∘f + (𝑄𝑁)))
3425, 33eqtrd 2793 . . . 4 (𝜑 → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀) ∘f + (𝑄𝑁)))
3534fveq1d 6665 . . 3 (𝜑 → ((𝑄‘(𝑀 𝑁))‘𝐴) = (((𝑄𝑀) ∘f + (𝑄𝑁))‘𝐴))
367, 8, 26, 2, 27, 30pwselbas 16833 . . . . 5 (𝜑 → (𝑄𝑀):(𝐾m 𝐼)⟶𝐾)
3736ffnd 6504 . . . 4 (𝜑 → (𝑄𝑀) Fn (𝐾m 𝐼))
387, 8, 26, 2, 27, 31pwselbas 16833 . . . . 5 (𝜑 → (𝑄𝑁):(𝐾m 𝐼)⟶𝐾)
3938ffnd 6504 . . . 4 (𝜑 → (𝑄𝑁) Fn (𝐾m 𝐼))
40 evlsaddval.a . . . 4 (𝜑𝐴 ∈ (𝐾m 𝐼))
41 fnfvof 7427 . . . 4 ((((𝑄𝑀) Fn (𝐾m 𝐼) ∧ (𝑄𝑁) Fn (𝐾m 𝐼)) ∧ ((𝐾m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾m 𝐼))) → (((𝑄𝑀) ∘f + (𝑄𝑁))‘𝐴) = (((𝑄𝑀)‘𝐴) + ((𝑄𝑁)‘𝐴)))
4237, 39, 27, 40, 41syl22anc 837 . . 3 (𝜑 → (((𝑄𝑀) ∘f + (𝑄𝑁))‘𝐴) = (((𝑄𝑀)‘𝐴) + ((𝑄𝑁)‘𝐴)))
4315simprd 499 . . . 4 (𝜑 → ((𝑄𝑀)‘𝐴) = 𝑉)
4417simprd 499 . . . 4 (𝜑 → ((𝑄𝑁)‘𝐴) = 𝑊)
4543, 44oveq12d 7174 . . 3 (𝜑 → (((𝑄𝑀)‘𝐴) + ((𝑄𝑁)‘𝐴)) = (𝑉 + 𝑊))
4635, 42, 453eqtrd 2797 . 2 (𝜑 → ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 + 𝑊))
4722, 46jca 515 1 (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 + 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409   Fn wfn 6335  wf 6336  cfv 6340  (class class class)co 7156  f cof 7409  m cmap 8422  Basecbs 16554  s cress 16555  +gcplusg 16636  s cpws 16791  Grpcgrp 18182   GrpHom cghm 18435  CRingccrg 19379   RingHom crh 19548  SubRingcsubrg 19612   mPoly cmpl 20681   evalSub ces 20846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-ofr 7412  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-pm 8425  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-fzo 13096  df-seq 13432  df-hash 13754  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ds 16658  df-hom 16660  df-cco 16661  df-0g 16786  df-gsum 16787  df-prds 16792  df-pws 16794  df-mre 16928  df-mrc 16929  df-acs 16931  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-mhm 18035  df-submnd 18036  df-grp 18185  df-minusg 18186  df-sbg 18187  df-mulg 18305  df-subg 18356  df-ghm 18436  df-cntz 18527  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-srg 19337  df-ring 19380  df-cring 19381  df-rnghom 19551  df-subrg 19614  df-lmod 19717  df-lss 19785  df-lsp 19825  df-assa 20631  df-asp 20632  df-ascl 20633  df-psr 20684  df-mvr 20685  df-mpl 20686  df-evls 20848
This theorem is referenced by:  mhphf  39825
  Copyright terms: Public domain W3C validator