Step | Hyp | Ref
| Expression |
1 | | evlsaddval.i |
. . . . . 6
β’ (π β πΌ β π) |
2 | | evlsaddval.s |
. . . . . 6
β’ (π β π β CRing) |
3 | | evlsaddval.r |
. . . . . 6
β’ (π β π
β (SubRingβπ)) |
4 | | evlsaddval.q |
. . . . . . 7
β’ π = ((πΌ evalSub π)βπ
) |
5 | | evlsaddval.p |
. . . . . . 7
β’ π = (πΌ mPoly π) |
6 | | evlsaddval.u |
. . . . . . 7
β’ π = (π βΎs π
) |
7 | | eqid 2731 |
. . . . . . 7
β’ (π βs
(πΎ βm πΌ)) = (π βs (πΎ βm πΌ)) |
8 | | evlsaddval.k |
. . . . . . 7
β’ πΎ = (Baseβπ) |
9 | 4, 5, 6, 7, 8 | evlsrhm 21871 |
. . . . . 6
β’ ((πΌ β π β§ π β CRing β§ π
β (SubRingβπ)) β π β (π RingHom (π βs (πΎ βm πΌ)))) |
10 | 1, 2, 3, 9 | syl3anc 1370 |
. . . . 5
β’ (π β π β (π RingHom (π βs (πΎ βm πΌ)))) |
11 | | rhmghm 20376 |
. . . . 5
β’ (π β (π RingHom (π βs (πΎ βm πΌ))) β π β (π GrpHom (π βs (πΎ βm πΌ)))) |
12 | 10, 11 | syl 17 |
. . . 4
β’ (π β π β (π GrpHom (π βs (πΎ βm πΌ)))) |
13 | | ghmgrp1 19133 |
. . . 4
β’ (π β (π GrpHom (π βs (πΎ βm πΌ))) β π β Grp) |
14 | 12, 13 | syl 17 |
. . 3
β’ (π β π β Grp) |
15 | | evlsaddval.m |
. . . 4
β’ (π β (π β π΅ β§ ((πβπ)βπ΄) = π)) |
16 | 15 | simpld 494 |
. . 3
β’ (π β π β π΅) |
17 | | evlsaddval.n |
. . . 4
β’ (π β (π β π΅ β§ ((πβπ)βπ΄) = π)) |
18 | 17 | simpld 494 |
. . 3
β’ (π β π β π΅) |
19 | | evlsaddval.b |
. . . 4
β’ π΅ = (Baseβπ) |
20 | | evlsaddval.g |
. . . 4
β’ β =
(+gβπ) |
21 | 19, 20 | grpcl 18864 |
. . 3
β’ ((π β Grp β§ π β π΅ β§ π β π΅) β (π β π) β π΅) |
22 | 14, 16, 18, 21 | syl3anc 1370 |
. 2
β’ (π β (π β π) β π΅) |
23 | | eqid 2731 |
. . . . . . 7
β’
(+gβ(π βs (πΎ βm πΌ))) =
(+gβ(π
βs (πΎ βm πΌ))) |
24 | 19, 20, 23 | ghmlin 19136 |
. . . . . 6
β’ ((π β (π GrpHom (π βs (πΎ βm πΌ))) β§ π β π΅ β§ π β π΅) β (πβ(π β π)) = ((πβπ)(+gβ(π βs (πΎ βm πΌ)))(πβπ))) |
25 | 12, 16, 18, 24 | syl3anc 1370 |
. . . . 5
β’ (π β (πβ(π β π)) = ((πβπ)(+gβ(π βs (πΎ βm πΌ)))(πβπ))) |
26 | | eqid 2731 |
. . . . . 6
β’
(Baseβ(π
βs (πΎ βm πΌ))) = (Baseβ(π βs (πΎ βm πΌ))) |
27 | | ovexd 7447 |
. . . . . 6
β’ (π β (πΎ βm πΌ) β V) |
28 | 19, 26 | rhmf 20377 |
. . . . . . . 8
β’ (π β (π RingHom (π βs (πΎ βm πΌ))) β π:π΅βΆ(Baseβ(π βs (πΎ βm πΌ)))) |
29 | 10, 28 | syl 17 |
. . . . . . 7
β’ (π β π:π΅βΆ(Baseβ(π βs (πΎ βm πΌ)))) |
30 | 29, 16 | ffvelcdmd 7088 |
. . . . . 6
β’ (π β (πβπ) β (Baseβ(π βs (πΎ βm πΌ)))) |
31 | 29, 18 | ffvelcdmd 7088 |
. . . . . 6
β’ (π β (πβπ) β (Baseβ(π βs (πΎ βm πΌ)))) |
32 | | evlsaddval.f |
. . . . . 6
β’ + =
(+gβπ) |
33 | 7, 26, 2, 27, 30, 31, 32, 23 | pwsplusgval 17441 |
. . . . 5
β’ (π β ((πβπ)(+gβ(π βs (πΎ βm πΌ)))(πβπ)) = ((πβπ) βf + (πβπ))) |
34 | 25, 33 | eqtrd 2771 |
. . . 4
β’ (π β (πβ(π β π)) = ((πβπ) βf + (πβπ))) |
35 | 34 | fveq1d 6894 |
. . 3
β’ (π β ((πβ(π β π))βπ΄) = (((πβπ) βf + (πβπ))βπ΄)) |
36 | 7, 8, 26, 2, 27, 30 | pwselbas 17440 |
. . . . 5
β’ (π β (πβπ):(πΎ βm πΌ)βΆπΎ) |
37 | 36 | ffnd 6719 |
. . . 4
β’ (π β (πβπ) Fn (πΎ βm πΌ)) |
38 | 7, 8, 26, 2, 27, 31 | pwselbas 17440 |
. . . . 5
β’ (π β (πβπ):(πΎ βm πΌ)βΆπΎ) |
39 | 38 | ffnd 6719 |
. . . 4
β’ (π β (πβπ) Fn (πΎ βm πΌ)) |
40 | | evlsaddval.a |
. . . 4
β’ (π β π΄ β (πΎ βm πΌ)) |
41 | | fnfvof 7690 |
. . . 4
β’ ((((πβπ) Fn (πΎ βm πΌ) β§ (πβπ) Fn (πΎ βm πΌ)) β§ ((πΎ βm πΌ) β V β§ π΄ β (πΎ βm πΌ))) β (((πβπ) βf + (πβπ))βπ΄) = (((πβπ)βπ΄) + ((πβπ)βπ΄))) |
42 | 37, 39, 27, 40, 41 | syl22anc 836 |
. . 3
β’ (π β (((πβπ) βf + (πβπ))βπ΄) = (((πβπ)βπ΄) + ((πβπ)βπ΄))) |
43 | 15 | simprd 495 |
. . . 4
β’ (π β ((πβπ)βπ΄) = π) |
44 | 17 | simprd 495 |
. . . 4
β’ (π β ((πβπ)βπ΄) = π) |
45 | 43, 44 | oveq12d 7430 |
. . 3
β’ (π β (((πβπ)βπ΄) + ((πβπ)βπ΄)) = (π + π)) |
46 | 35, 42, 45 | 3eqtrd 2775 |
. 2
β’ (π β ((πβ(π β π))βπ΄) = (π + π)) |
47 | 22, 46 | jca 511 |
1
β’ (π β ((π β π) β π΅ β§ ((πβ(π β π))βπ΄) = (π + π))) |