Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsaddval Structured version   Visualization version   GIF version

Theorem evlsaddval 42686
Description: Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024.)
Hypotheses
Ref Expression
evlsaddval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsaddval.p 𝑃 = (𝐼 mPoly 𝑈)
evlsaddval.u 𝑈 = (𝑆s 𝑅)
evlsaddval.k 𝐾 = (Base‘𝑆)
evlsaddval.b 𝐵 = (Base‘𝑃)
evlsaddval.i (𝜑𝐼𝑍)
evlsaddval.s (𝜑𝑆 ∈ CRing)
evlsaddval.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsaddval.a (𝜑𝐴 ∈ (𝐾m 𝐼))
evlsaddval.m (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
evlsaddval.n (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))
evlsaddval.g = (+g𝑃)
evlsaddval.f + = (+g𝑆)
Assertion
Ref Expression
evlsaddval (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 + 𝑊)))

Proof of Theorem evlsaddval
StepHypRef Expression
1 evlsaddval.i . . . . . 6 (𝜑𝐼𝑍)
2 evlsaddval.s . . . . . 6 (𝜑𝑆 ∈ CRing)
3 evlsaddval.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlsaddval.q . . . . . . 7 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 evlsaddval.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑈)
6 evlsaddval.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
7 eqid 2733 . . . . . . 7 (𝑆s (𝐾m 𝐼)) = (𝑆s (𝐾m 𝐼))
8 evlsaddval.k . . . . . . 7 𝐾 = (Base‘𝑆)
94, 5, 6, 7, 8evlsrhm 22024 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
101, 2, 3, 9syl3anc 1373 . . . . 5 (𝜑𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
11 rhmghm 20403 . . . . 5 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑄 ∈ (𝑃 GrpHom (𝑆s (𝐾m 𝐼))))
1210, 11syl 17 . . . 4 (𝜑𝑄 ∈ (𝑃 GrpHom (𝑆s (𝐾m 𝐼))))
13 ghmgrp1 19132 . . . 4 (𝑄 ∈ (𝑃 GrpHom (𝑆s (𝐾m 𝐼))) → 𝑃 ∈ Grp)
1412, 13syl 17 . . 3 (𝜑𝑃 ∈ Grp)
15 evlsaddval.m . . . 4 (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
1615simpld 494 . . 3 (𝜑𝑀𝐵)
17 evlsaddval.n . . . 4 (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))
1817simpld 494 . . 3 (𝜑𝑁𝐵)
19 evlsaddval.b . . . 4 𝐵 = (Base‘𝑃)
20 evlsaddval.g . . . 4 = (+g𝑃)
2119, 20grpcl 18856 . . 3 ((𝑃 ∈ Grp ∧ 𝑀𝐵𝑁𝐵) → (𝑀 𝑁) ∈ 𝐵)
2214, 16, 18, 21syl3anc 1373 . 2 (𝜑 → (𝑀 𝑁) ∈ 𝐵)
23 eqid 2733 . . . . . . 7 (+g‘(𝑆s (𝐾m 𝐼))) = (+g‘(𝑆s (𝐾m 𝐼)))
2419, 20, 23ghmlin 19135 . . . . . 6 ((𝑄 ∈ (𝑃 GrpHom (𝑆s (𝐾m 𝐼))) ∧ 𝑀𝐵𝑁𝐵) → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀)(+g‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)))
2512, 16, 18, 24syl3anc 1373 . . . . 5 (𝜑 → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀)(+g‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)))
26 eqid 2733 . . . . . 6 (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (𝐾m 𝐼)))
27 ovexd 7387 . . . . . 6 (𝜑 → (𝐾m 𝐼) ∈ V)
2819, 26rhmf 20404 . . . . . . . 8 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
2910, 28syl 17 . . . . . . 7 (𝜑𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
3029, 16ffvelcdmd 7024 . . . . . 6 (𝜑 → (𝑄𝑀) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
3129, 18ffvelcdmd 7024 . . . . . 6 (𝜑 → (𝑄𝑁) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
32 evlsaddval.f . . . . . 6 + = (+g𝑆)
337, 26, 2, 27, 30, 31, 32, 23pwsplusgval 17396 . . . . 5 (𝜑 → ((𝑄𝑀)(+g‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)) = ((𝑄𝑀) ∘f + (𝑄𝑁)))
3425, 33eqtrd 2768 . . . 4 (𝜑 → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀) ∘f + (𝑄𝑁)))
3534fveq1d 6830 . . 3 (𝜑 → ((𝑄‘(𝑀 𝑁))‘𝐴) = (((𝑄𝑀) ∘f + (𝑄𝑁))‘𝐴))
367, 8, 26, 2, 27, 30pwselbas 17395 . . . . 5 (𝜑 → (𝑄𝑀):(𝐾m 𝐼)⟶𝐾)
3736ffnd 6657 . . . 4 (𝜑 → (𝑄𝑀) Fn (𝐾m 𝐼))
387, 8, 26, 2, 27, 31pwselbas 17395 . . . . 5 (𝜑 → (𝑄𝑁):(𝐾m 𝐼)⟶𝐾)
3938ffnd 6657 . . . 4 (𝜑 → (𝑄𝑁) Fn (𝐾m 𝐼))
40 evlsaddval.a . . . 4 (𝜑𝐴 ∈ (𝐾m 𝐼))
41 fnfvof 7633 . . . 4 ((((𝑄𝑀) Fn (𝐾m 𝐼) ∧ (𝑄𝑁) Fn (𝐾m 𝐼)) ∧ ((𝐾m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾m 𝐼))) → (((𝑄𝑀) ∘f + (𝑄𝑁))‘𝐴) = (((𝑄𝑀)‘𝐴) + ((𝑄𝑁)‘𝐴)))
4237, 39, 27, 40, 41syl22anc 838 . . 3 (𝜑 → (((𝑄𝑀) ∘f + (𝑄𝑁))‘𝐴) = (((𝑄𝑀)‘𝐴) + ((𝑄𝑁)‘𝐴)))
4315simprd 495 . . . 4 (𝜑 → ((𝑄𝑀)‘𝐴) = 𝑉)
4417simprd 495 . . . 4 (𝜑 → ((𝑄𝑁)‘𝐴) = 𝑊)
4543, 44oveq12d 7370 . . 3 (𝜑 → (((𝑄𝑀)‘𝐴) + ((𝑄𝑁)‘𝐴)) = (𝑉 + 𝑊))
4635, 42, 453eqtrd 2772 . 2 (𝜑 → ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 + 𝑊))
4722, 46jca 511 1 (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 + 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  f cof 7614  m cmap 8756  Basecbs 17122  s cress 17143  +gcplusg 17163  s cpws 17352  Grpcgrp 18848   GrpHom cghm 19126  CRingccrg 20154   RingHom crh 20389  SubRingcsubrg 20486   mPoly cmpl 21845   evalSub ces 22008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20463  df-subrg 20487  df-lmod 20797  df-lss 20867  df-lsp 20907  df-assa 21792  df-asp 21793  df-ascl 21794  df-psr 21848  df-mvr 21849  df-mpl 21850  df-evls 22010
This theorem is referenced by:  evlsmaprhm  42688
  Copyright terms: Public domain W3C validator