![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1addd | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for addition of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) |
evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
evl1addd.4 | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) |
evl1addd.g | ⊢ ✚ = (+g‘𝑃) |
evl1addd.a | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
evl1addd | ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ✚ 𝑁))‘𝑌) = (𝑉 + 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1addd.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | evl1addd.q | . . . . . . 7 ⊢ 𝑂 = (eval1‘𝑅) | |
3 | evl1addd.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2735 | . . . . . . 7 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
5 | evl1addd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 2, 3, 4, 5 | evl1rhm 22352 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
8 | rhmghm 20501 | . . . . 5 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵))) |
10 | ghmgrp1 19249 | . . . 4 ⊢ (𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵)) → 𝑃 ∈ Grp) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
12 | evl1addd.3 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
13 | 12 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
14 | evl1addd.4 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | |
15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
16 | evl1addd.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
17 | evl1addd.g | . . . 4 ⊢ ✚ = (+g‘𝑃) | |
18 | 16, 17 | grpcl 18972 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑀 ✚ 𝑁) ∈ 𝑈) |
19 | 11, 13, 15, 18 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑀 ✚ 𝑁) ∈ 𝑈) |
20 | eqid 2735 | . . . . . . 7 ⊢ (+g‘(𝑅 ↑s 𝐵)) = (+g‘(𝑅 ↑s 𝐵)) | |
21 | 16, 17, 20 | ghmlin 19252 | . . . . . 6 ⊢ ((𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵)) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑂‘(𝑀 ✚ 𝑁)) = ((𝑂‘𝑀)(+g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
22 | 9, 13, 15, 21 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑂‘(𝑀 ✚ 𝑁)) = ((𝑂‘𝑀)(+g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
23 | eqid 2735 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
24 | 5 | fvexi 6921 | . . . . . . 7 ⊢ 𝐵 ∈ V |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
26 | 16, 23 | rhmf 20502 | . . . . . . . 8 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
27 | 7, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
28 | 27, 13 | ffvelcdmd 7105 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) |
29 | 27, 15 | ffvelcdmd 7105 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵))) |
30 | evl1addd.a | . . . . . 6 ⊢ + = (+g‘𝑅) | |
31 | 4, 23, 1, 25, 28, 29, 30, 20 | pwsplusgval 17537 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑀)(+g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f + (𝑂‘𝑁))) |
32 | 22, 31 | eqtrd 2775 | . . . 4 ⊢ (𝜑 → (𝑂‘(𝑀 ✚ 𝑁)) = ((𝑂‘𝑀) ∘f + (𝑂‘𝑁))) |
33 | 32 | fveq1d 6909 | . . 3 ⊢ (𝜑 → ((𝑂‘(𝑀 ✚ 𝑁))‘𝑌) = (((𝑂‘𝑀) ∘f + (𝑂‘𝑁))‘𝑌)) |
34 | 4, 5, 23, 1, 25, 28 | pwselbas 17536 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑀):𝐵⟶𝐵) |
35 | 34 | ffnd 6738 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑀) Fn 𝐵) |
36 | 4, 5, 23, 1, 25, 29 | pwselbas 17536 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑁):𝐵⟶𝐵) |
37 | 36 | ffnd 6738 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑁) Fn 𝐵) |
38 | evl1addd.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
39 | fnfvof 7714 | . . . 4 ⊢ ((((𝑂‘𝑀) Fn 𝐵 ∧ (𝑂‘𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌 ∈ 𝐵)) → (((𝑂‘𝑀) ∘f + (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) + ((𝑂‘𝑁)‘𝑌))) | |
40 | 35, 37, 25, 38, 39 | syl22anc 839 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀) ∘f + (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) + ((𝑂‘𝑁)‘𝑌))) |
41 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) |
42 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑁)‘𝑌) = 𝑊) |
43 | 41, 42 | oveq12d 7449 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀)‘𝑌) + ((𝑂‘𝑁)‘𝑌)) = (𝑉 + 𝑊)) |
44 | 33, 40, 43 | 3eqtrd 2779 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑀 ✚ 𝑁))‘𝑌) = (𝑉 + 𝑊)) |
45 | 19, 44 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ✚ 𝑁))‘𝑌) = (𝑉 + 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ∘f cof 7695 Basecbs 17245 +gcplusg 17298 ↑s cpws 17493 Grpcgrp 18964 GrpHom cghm 19243 CRingccrg 20252 RingHom crh 20486 Poly1cpl1 22194 eval1ce1 22334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-evls 22116 df-evl 22117 df-psr1 22197 df-ply1 22199 df-evl1 22336 |
This theorem is referenced by: evl1gsumdlem 22376 evls1addd 22391 aks6d1c1p2 42091 aks6d1c1p3 42092 aks6d1c5lem1 42118 aks6d1c5lem2 42120 aks5lem3a 42171 |
Copyright terms: Public domain | W3C validator |