MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1addd Structured version   Visualization version   GIF version

Theorem evl1addd 22235
Description: Polynomial evaluation builder for addition of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1addd.4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
evl1addd.g = (+g𝑃)
evl1addd.a + = (+g𝑅)
Assertion
Ref Expression
evl1addd (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 + 𝑊)))

Proof of Theorem evl1addd
StepHypRef Expression
1 evl1addd.1 . . . . . 6 (𝜑𝑅 ∈ CRing)
2 evl1addd.q . . . . . . 7 𝑂 = (eval1𝑅)
3 evl1addd.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 eqid 2730 . . . . . . 7 (𝑅s 𝐵) = (𝑅s 𝐵)
5 evl1addd.b . . . . . . 7 𝐵 = (Base‘𝑅)
62, 3, 4, 5evl1rhm 22226 . . . . . 6 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
71, 6syl 17 . . . . 5 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
8 rhmghm 20400 . . . . 5 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)))
97, 8syl 17 . . . 4 (𝜑𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)))
10 ghmgrp1 19157 . . . 4 (𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)) → 𝑃 ∈ Grp)
119, 10syl 17 . . 3 (𝜑𝑃 ∈ Grp)
12 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1312simpld 494 . . 3 (𝜑𝑀𝑈)
14 evl1addd.4 . . . 4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
1514simpld 494 . . 3 (𝜑𝑁𝑈)
16 evl1addd.u . . . 4 𝑈 = (Base‘𝑃)
17 evl1addd.g . . . 4 = (+g𝑃)
1816, 17grpcl 18880 . . 3 ((𝑃 ∈ Grp ∧ 𝑀𝑈𝑁𝑈) → (𝑀 𝑁) ∈ 𝑈)
1911, 13, 15, 18syl3anc 1373 . 2 (𝜑 → (𝑀 𝑁) ∈ 𝑈)
20 eqid 2730 . . . . . . 7 (+g‘(𝑅s 𝐵)) = (+g‘(𝑅s 𝐵))
2116, 17, 20ghmlin 19160 . . . . . 6 ((𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)) ∧ 𝑀𝑈𝑁𝑈) → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(+g‘(𝑅s 𝐵))(𝑂𝑁)))
229, 13, 15, 21syl3anc 1373 . . . . 5 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(+g‘(𝑅s 𝐵))(𝑂𝑁)))
23 eqid 2730 . . . . . 6 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
245fvexi 6875 . . . . . . 7 𝐵 ∈ V
2524a1i 11 . . . . . 6 (𝜑𝐵 ∈ V)
2616, 23rhmf 20401 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
277, 26syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
2827, 13ffvelcdmd 7060 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
2927, 15ffvelcdmd 7060 . . . . . 6 (𝜑 → (𝑂𝑁) ∈ (Base‘(𝑅s 𝐵)))
30 evl1addd.a . . . . . 6 + = (+g𝑅)
314, 23, 1, 25, 28, 29, 30, 20pwsplusgval 17460 . . . . 5 (𝜑 → ((𝑂𝑀)(+g‘(𝑅s 𝐵))(𝑂𝑁)) = ((𝑂𝑀) ∘f + (𝑂𝑁)))
3222, 31eqtrd 2765 . . . 4 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀) ∘f + (𝑂𝑁)))
3332fveq1d 6863 . . 3 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (((𝑂𝑀) ∘f + (𝑂𝑁))‘𝑌))
344, 5, 23, 1, 25, 28pwselbas 17459 . . . . 5 (𝜑 → (𝑂𝑀):𝐵𝐵)
3534ffnd 6692 . . . 4 (𝜑 → (𝑂𝑀) Fn 𝐵)
364, 5, 23, 1, 25, 29pwselbas 17459 . . . . 5 (𝜑 → (𝑂𝑁):𝐵𝐵)
3736ffnd 6692 . . . 4 (𝜑 → (𝑂𝑁) Fn 𝐵)
38 evl1addd.2 . . . 4 (𝜑𝑌𝐵)
39 fnfvof 7673 . . . 4 ((((𝑂𝑀) Fn 𝐵 ∧ (𝑂𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌𝐵)) → (((𝑂𝑀) ∘f + (𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌) + ((𝑂𝑁)‘𝑌)))
4035, 37, 25, 38, 39syl22anc 838 . . 3 (𝜑 → (((𝑂𝑀) ∘f + (𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌) + ((𝑂𝑁)‘𝑌)))
4112simprd 495 . . . 4 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
4214simprd 495 . . . 4 (𝜑 → ((𝑂𝑁)‘𝑌) = 𝑊)
4341, 42oveq12d 7408 . . 3 (𝜑 → (((𝑂𝑀)‘𝑌) + ((𝑂𝑁)‘𝑌)) = (𝑉 + 𝑊))
4433, 40, 433eqtrd 2769 . 2 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 + 𝑊))
4519, 44jca 511 1 (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 + 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  Basecbs 17186  +gcplusg 17227  s cpws 17416  Grpcgrp 18872   GrpHom cghm 19151  CRingccrg 20150   RingHom crh 20385  Poly1cpl1 22068  eval1ce1 22208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-ply1 22073  df-evl1 22210
This theorem is referenced by:  evl1gsumdlem  22250  evls1addd  22265  aks6d1c1p2  42104  aks6d1c1p3  42105  aks6d1c5lem1  42131  aks6d1c5lem2  42133  aks5lem3a  42184
  Copyright terms: Public domain W3C validator