MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1addd Structured version   Visualization version   GIF version

Theorem evl1addd 22279
Description: Polynomial evaluation builder for addition of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1addd.4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
evl1addd.g = (+g𝑃)
evl1addd.a + = (+g𝑅)
Assertion
Ref Expression
evl1addd (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 + 𝑊)))

Proof of Theorem evl1addd
StepHypRef Expression
1 evl1addd.1 . . . . . 6 (𝜑𝑅 ∈ CRing)
2 evl1addd.q . . . . . . 7 𝑂 = (eval1𝑅)
3 evl1addd.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 eqid 2735 . . . . . . 7 (𝑅s 𝐵) = (𝑅s 𝐵)
5 evl1addd.b . . . . . . 7 𝐵 = (Base‘𝑅)
62, 3, 4, 5evl1rhm 22270 . . . . . 6 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
71, 6syl 17 . . . . 5 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
8 rhmghm 20444 . . . . 5 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)))
97, 8syl 17 . . . 4 (𝜑𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)))
10 ghmgrp1 19201 . . . 4 (𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)) → 𝑃 ∈ Grp)
119, 10syl 17 . . 3 (𝜑𝑃 ∈ Grp)
12 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1312simpld 494 . . 3 (𝜑𝑀𝑈)
14 evl1addd.4 . . . 4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
1514simpld 494 . . 3 (𝜑𝑁𝑈)
16 evl1addd.u . . . 4 𝑈 = (Base‘𝑃)
17 evl1addd.g . . . 4 = (+g𝑃)
1816, 17grpcl 18924 . . 3 ((𝑃 ∈ Grp ∧ 𝑀𝑈𝑁𝑈) → (𝑀 𝑁) ∈ 𝑈)
1911, 13, 15, 18syl3anc 1373 . 2 (𝜑 → (𝑀 𝑁) ∈ 𝑈)
20 eqid 2735 . . . . . . 7 (+g‘(𝑅s 𝐵)) = (+g‘(𝑅s 𝐵))
2116, 17, 20ghmlin 19204 . . . . . 6 ((𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)) ∧ 𝑀𝑈𝑁𝑈) → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(+g‘(𝑅s 𝐵))(𝑂𝑁)))
229, 13, 15, 21syl3anc 1373 . . . . 5 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(+g‘(𝑅s 𝐵))(𝑂𝑁)))
23 eqid 2735 . . . . . 6 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
245fvexi 6890 . . . . . . 7 𝐵 ∈ V
2524a1i 11 . . . . . 6 (𝜑𝐵 ∈ V)
2616, 23rhmf 20445 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
277, 26syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
2827, 13ffvelcdmd 7075 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
2927, 15ffvelcdmd 7075 . . . . . 6 (𝜑 → (𝑂𝑁) ∈ (Base‘(𝑅s 𝐵)))
30 evl1addd.a . . . . . 6 + = (+g𝑅)
314, 23, 1, 25, 28, 29, 30, 20pwsplusgval 17504 . . . . 5 (𝜑 → ((𝑂𝑀)(+g‘(𝑅s 𝐵))(𝑂𝑁)) = ((𝑂𝑀) ∘f + (𝑂𝑁)))
3222, 31eqtrd 2770 . . . 4 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀) ∘f + (𝑂𝑁)))
3332fveq1d 6878 . . 3 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (((𝑂𝑀) ∘f + (𝑂𝑁))‘𝑌))
344, 5, 23, 1, 25, 28pwselbas 17503 . . . . 5 (𝜑 → (𝑂𝑀):𝐵𝐵)
3534ffnd 6707 . . . 4 (𝜑 → (𝑂𝑀) Fn 𝐵)
364, 5, 23, 1, 25, 29pwselbas 17503 . . . . 5 (𝜑 → (𝑂𝑁):𝐵𝐵)
3736ffnd 6707 . . . 4 (𝜑 → (𝑂𝑁) Fn 𝐵)
38 evl1addd.2 . . . 4 (𝜑𝑌𝐵)
39 fnfvof 7688 . . . 4 ((((𝑂𝑀) Fn 𝐵 ∧ (𝑂𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌𝐵)) → (((𝑂𝑀) ∘f + (𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌) + ((𝑂𝑁)‘𝑌)))
4035, 37, 25, 38, 39syl22anc 838 . . 3 (𝜑 → (((𝑂𝑀) ∘f + (𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌) + ((𝑂𝑁)‘𝑌)))
4112simprd 495 . . . 4 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
4214simprd 495 . . . 4 (𝜑 → ((𝑂𝑁)‘𝑌) = 𝑊)
4341, 42oveq12d 7423 . . 3 (𝜑 → (((𝑂𝑀)‘𝑌) + ((𝑂𝑁)‘𝑌)) = (𝑉 + 𝑊))
4433, 40, 433eqtrd 2774 . 2 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 + 𝑊))
4519, 44jca 511 1 (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉 + 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669  Basecbs 17228  +gcplusg 17271  s cpws 17460  Grpcgrp 18916   GrpHom cghm 19195  CRingccrg 20194   RingHom crh 20429  Poly1cpl1 22112  eval1ce1 22252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-ply1 22117  df-evl1 22254
This theorem is referenced by:  evl1gsumdlem  22294  evls1addd  22309  aks6d1c1p2  42122  aks6d1c1p3  42123  aks6d1c5lem1  42149  aks6d1c5lem2  42151  aks5lem3a  42202
  Copyright terms: Public domain W3C validator