![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchr2sum | Structured version Visualization version GIF version |
Description: An orthogonality relation for Dirichlet characters: the sum of π(π) Β· βπ(π) over all π is nonzero only when π = π. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchr2sum.g | β’ πΊ = (DChrβπ) |
dchr2sum.z | β’ π = (β€/nβ€βπ) |
dchr2sum.d | β’ π· = (BaseβπΊ) |
dchr2sum.b | β’ π΅ = (Baseβπ) |
dchr2sum.x | β’ (π β π β π·) |
dchr2sum.y | β’ (π β π β π·) |
Ref | Expression |
---|---|
dchr2sum | β’ (π β Ξ£π β π΅ ((πβπ) Β· (ββ(πβπ))) = if(π = π, (Οβπ), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchr2sum.g | . . 3 β’ πΊ = (DChrβπ) | |
2 | dchr2sum.z | . . 3 β’ π = (β€/nβ€βπ) | |
3 | dchr2sum.d | . . 3 β’ π· = (BaseβπΊ) | |
4 | eqid 2732 | . . 3 β’ (0gβπΊ) = (0gβπΊ) | |
5 | dchr2sum.x | . . . . . 6 β’ (π β π β π·) | |
6 | 1, 3 | dchrrcl 26740 | . . . . . 6 β’ (π β π· β π β β) |
7 | 5, 6 | syl 17 | . . . . 5 β’ (π β π β β) |
8 | 1 | dchrabl 26754 | . . . . 5 β’ (π β β β πΊ β Abel) |
9 | ablgrp 19652 | . . . . 5 β’ (πΊ β Abel β πΊ β Grp) | |
10 | 7, 8, 9 | 3syl 18 | . . . 4 β’ (π β πΊ β Grp) |
11 | dchr2sum.y | . . . 4 β’ (π β π β π·) | |
12 | eqid 2732 | . . . . 5 β’ (-gβπΊ) = (-gβπΊ) | |
13 | 3, 12 | grpsubcl 18902 | . . . 4 β’ ((πΊ β Grp β§ π β π· β§ π β π·) β (π(-gβπΊ)π) β π·) |
14 | 10, 5, 11, 13 | syl3anc 1371 | . . 3 β’ (π β (π(-gβπΊ)π) β π·) |
15 | dchr2sum.b | . . 3 β’ π΅ = (Baseβπ) | |
16 | 1, 2, 3, 4, 14, 15 | dchrsum 26769 | . 2 β’ (π β Ξ£π β π΅ ((π(-gβπΊ)π)βπ) = if((π(-gβπΊ)π) = (0gβπΊ), (Οβπ), 0)) |
17 | 5 | adantr 481 | . . . . . . 7 β’ ((π β§ π β π΅) β π β π·) |
18 | 11 | adantr 481 | . . . . . . 7 β’ ((π β§ π β π΅) β π β π·) |
19 | eqid 2732 | . . . . . . . 8 β’ (+gβπΊ) = (+gβπΊ) | |
20 | eqid 2732 | . . . . . . . 8 β’ (invgβπΊ) = (invgβπΊ) | |
21 | 3, 19, 20, 12 | grpsubval 18869 | . . . . . . 7 β’ ((π β π· β§ π β π·) β (π(-gβπΊ)π) = (π(+gβπΊ)((invgβπΊ)βπ))) |
22 | 17, 18, 21 | syl2anc 584 | . . . . . 6 β’ ((π β§ π β π΅) β (π(-gβπΊ)π) = (π(+gβπΊ)((invgβπΊ)βπ))) |
23 | 7 | adantr 481 | . . . . . . . . 9 β’ ((π β§ π β π΅) β π β β) |
24 | 23, 8, 9 | 3syl 18 | . . . . . . . 8 β’ ((π β§ π β π΅) β πΊ β Grp) |
25 | 3, 20 | grpinvcl 18871 | . . . . . . . 8 β’ ((πΊ β Grp β§ π β π·) β ((invgβπΊ)βπ) β π·) |
26 | 24, 18, 25 | syl2anc 584 | . . . . . . 7 β’ ((π β§ π β π΅) β ((invgβπΊ)βπ) β π·) |
27 | 1, 2, 3, 19, 17, 26 | dchrmul 26748 | . . . . . 6 β’ ((π β§ π β π΅) β (π(+gβπΊ)((invgβπΊ)βπ)) = (π βf Β· ((invgβπΊ)βπ))) |
28 | 22, 27 | eqtrd 2772 | . . . . 5 β’ ((π β§ π β π΅) β (π(-gβπΊ)π) = (π βf Β· ((invgβπΊ)βπ))) |
29 | 28 | fveq1d 6893 | . . . 4 β’ ((π β§ π β π΅) β ((π(-gβπΊ)π)βπ) = ((π βf Β· ((invgβπΊ)βπ))βπ)) |
30 | 1, 2, 3, 15, 17 | dchrf 26742 | . . . . . 6 β’ ((π β§ π β π΅) β π:π΅βΆβ) |
31 | 30 | ffnd 6718 | . . . . 5 β’ ((π β§ π β π΅) β π Fn π΅) |
32 | 1, 2, 3, 15, 26 | dchrf 26742 | . . . . . 6 β’ ((π β§ π β π΅) β ((invgβπΊ)βπ):π΅βΆβ) |
33 | 32 | ffnd 6718 | . . . . 5 β’ ((π β§ π β π΅) β ((invgβπΊ)βπ) Fn π΅) |
34 | 15 | fvexi 6905 | . . . . . 6 β’ π΅ β V |
35 | 34 | a1i 11 | . . . . 5 β’ ((π β§ π β π΅) β π΅ β V) |
36 | simpr 485 | . . . . 5 β’ ((π β§ π β π΅) β π β π΅) | |
37 | fnfvof 7686 | . . . . 5 β’ (((π Fn π΅ β§ ((invgβπΊ)βπ) Fn π΅) β§ (π΅ β V β§ π β π΅)) β ((π βf Β· ((invgβπΊ)βπ))βπ) = ((πβπ) Β· (((invgβπΊ)βπ)βπ))) | |
38 | 31, 33, 35, 36, 37 | syl22anc 837 | . . . 4 β’ ((π β§ π β π΅) β ((π βf Β· ((invgβπΊ)βπ))βπ) = ((πβπ) Β· (((invgβπΊ)βπ)βπ))) |
39 | 1, 3, 18, 20 | dchrinv 26761 | . . . . . . 7 β’ ((π β§ π β π΅) β ((invgβπΊ)βπ) = (β β π)) |
40 | 39 | fveq1d 6893 | . . . . . 6 β’ ((π β§ π β π΅) β (((invgβπΊ)βπ)βπ) = ((β β π)βπ)) |
41 | 1, 2, 3, 15, 18 | dchrf 26742 | . . . . . . 7 β’ ((π β§ π β π΅) β π:π΅βΆβ) |
42 | fvco3 6990 | . . . . . . 7 β’ ((π:π΅βΆβ β§ π β π΅) β ((β β π)βπ) = (ββ(πβπ))) | |
43 | 41, 36, 42 | syl2anc 584 | . . . . . 6 β’ ((π β§ π β π΅) β ((β β π)βπ) = (ββ(πβπ))) |
44 | 40, 43 | eqtrd 2772 | . . . . 5 β’ ((π β§ π β π΅) β (((invgβπΊ)βπ)βπ) = (ββ(πβπ))) |
45 | 44 | oveq2d 7424 | . . . 4 β’ ((π β§ π β π΅) β ((πβπ) Β· (((invgβπΊ)βπ)βπ)) = ((πβπ) Β· (ββ(πβπ)))) |
46 | 29, 38, 45 | 3eqtrd 2776 | . . 3 β’ ((π β§ π β π΅) β ((π(-gβπΊ)π)βπ) = ((πβπ) Β· (ββ(πβπ)))) |
47 | 46 | sumeq2dv 15648 | . 2 β’ (π β Ξ£π β π΅ ((π(-gβπΊ)π)βπ) = Ξ£π β π΅ ((πβπ) Β· (ββ(πβπ)))) |
48 | 3, 4, 12 | grpsubeq0 18908 | . . . 4 β’ ((πΊ β Grp β§ π β π· β§ π β π·) β ((π(-gβπΊ)π) = (0gβπΊ) β π = π)) |
49 | 10, 5, 11, 48 | syl3anc 1371 | . . 3 β’ (π β ((π(-gβπΊ)π) = (0gβπΊ) β π = π)) |
50 | 49 | ifbid 4551 | . 2 β’ (π β if((π(-gβπΊ)π) = (0gβπΊ), (Οβπ), 0) = if(π = π, (Οβπ), 0)) |
51 | 16, 47, 50 | 3eqtr3d 2780 | 1 β’ (π β Ξ£π β π΅ ((πβπ) Β· (ββ(πβπ))) = if(π = π, (Οβπ), 0)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 ifcif 4528 β ccom 5680 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7408 βf cof 7667 βcc 11107 0cc0 11109 Β· cmul 11114 βcn 12211 βccj 15042 Ξ£csu 15631 Οcphi 16696 Basecbs 17143 +gcplusg 17196 0gc0g 17384 Grpcgrp 18818 invgcminusg 18819 -gcsg 18820 Abelcabl 19648 β€/nβ€czn 21051 DChrcdchr 26732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-omul 8470 df-er 8702 df-ec 8704 df-qs 8708 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-acn 9936 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-ioc 13328 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-fac 14233 df-bc 14262 df-hash 14290 df-shft 15013 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15632 df-ef 16010 df-sin 16012 df-cos 16013 df-pi 16015 df-dvds 16197 df-gcd 16435 df-phi 16698 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-qus 17454 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-nsg 19003 df-eqg 19004 df-ghm 19089 df-cntz 19180 df-od 19395 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-rnghom 20250 df-subrg 20316 df-drng 20358 df-lmod 20472 df-lss 20542 df-lsp 20582 df-sra 20784 df-rgmod 20785 df-lidl 20786 df-rsp 20787 df-2idl 20856 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-fbas 20940 df-fg 20941 df-cnfld 20944 df-zring 21017 df-zrh 21052 df-zn 21055 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cld 22522 df-ntr 22523 df-cls 22524 df-nei 22601 df-lp 22639 df-perf 22640 df-cn 22730 df-cnp 22731 df-haus 22818 df-tx 23065 df-hmeo 23258 df-fil 23349 df-fm 23441 df-flim 23442 df-flf 23443 df-xms 23825 df-ms 23826 df-tms 23827 df-cncf 24393 df-limc 25382 df-dv 25383 df-log 26064 df-cxp 26065 df-dchr 26733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |