Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchr2sum | Structured version Visualization version GIF version |
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑋(𝑎) · ∗𝑌(𝑎) over all 𝑎 is nonzero only when 𝑋 = 𝑌. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchr2sum.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchr2sum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchr2sum.d | ⊢ 𝐷 = (Base‘𝐺) |
dchr2sum.b | ⊢ 𝐵 = (Base‘𝑍) |
dchr2sum.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchr2sum.y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
Ref | Expression |
---|---|
dchr2sum | ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchr2sum.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchr2sum.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchr2sum.d | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
4 | eqid 2737 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | dchr2sum.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
6 | 1, 3 | dchrrcl 26494 | . . . . . 6 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
8 | 1 | dchrabl 26508 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
9 | ablgrp 19487 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
11 | dchr2sum.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
12 | eqid 2737 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
13 | 3, 12 | grpsubcl 18752 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋(-g‘𝐺)𝑌) ∈ 𝐷) |
14 | 10, 5, 11, 13 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝑋(-g‘𝐺)𝑌) ∈ 𝐷) |
15 | dchr2sum.b | . . 3 ⊢ 𝐵 = (Base‘𝑍) | |
16 | 1, 2, 3, 4, 14, 15 | dchrsum 26523 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋(-g‘𝐺)𝑌)‘𝑎) = if((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺), (ϕ‘𝑁), 0)) |
17 | 5 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐷) |
18 | 11 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌 ∈ 𝐷) |
19 | eqid 2737 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
20 | eqid 2737 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
21 | 3, 19, 20, 12 | grpsubval 18722 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋(-g‘𝐺)𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
22 | 17, 18, 21 | syl2anc 585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(-g‘𝐺)𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
23 | 7 | adantr 482 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑁 ∈ ℕ) |
24 | 23, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐺 ∈ Grp) |
25 | 3, 20 | grpinvcl 18724 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐷) → ((invg‘𝐺)‘𝑌) ∈ 𝐷) |
26 | 24, 18, 25 | syl2anc 585 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐷) |
27 | 1, 2, 3, 19, 17, 26 | dchrmul 26502 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = (𝑋 ∘f · ((invg‘𝐺)‘𝑌))) |
28 | 22, 27 | eqtrd 2777 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(-g‘𝐺)𝑌) = (𝑋 ∘f · ((invg‘𝐺)‘𝑌))) |
29 | 28 | fveq1d 6832 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋(-g‘𝐺)𝑌)‘𝑎) = ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎)) |
30 | 1, 2, 3, 15, 17 | dchrf 26496 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋:𝐵⟶ℂ) |
31 | 30 | ffnd 6657 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 Fn 𝐵) |
32 | 1, 2, 3, 15, 26 | dchrf 26496 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌):𝐵⟶ℂ) |
33 | 32 | ffnd 6657 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) Fn 𝐵) |
34 | 15 | fvexi 6844 | . . . . . 6 ⊢ 𝐵 ∈ V |
35 | 34 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐵 ∈ V) |
36 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
37 | fnfvof 7617 | . . . . 5 ⊢ (((𝑋 Fn 𝐵 ∧ ((invg‘𝐺)‘𝑌) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑎 ∈ 𝐵)) → ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎) = ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎))) | |
38 | 31, 33, 35, 36, 37 | syl22anc 837 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎) = ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎))) |
39 | 1, 3, 18, 20 | dchrinv 26515 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) = (∗ ∘ 𝑌)) |
40 | 39 | fveq1d 6832 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (((invg‘𝐺)‘𝑌)‘𝑎) = ((∗ ∘ 𝑌)‘𝑎)) |
41 | 1, 2, 3, 15, 18 | dchrf 26496 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌:𝐵⟶ℂ) |
42 | fvco3 6928 | . . . . . . 7 ⊢ ((𝑌:𝐵⟶ℂ ∧ 𝑎 ∈ 𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) | |
43 | 41, 36, 42 | syl2anc 585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) |
44 | 40, 43 | eqtrd 2777 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (((invg‘𝐺)‘𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) |
45 | 44 | oveq2d 7358 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎)) = ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
46 | 29, 38, 45 | 3eqtrd 2781 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋(-g‘𝐺)𝑌)‘𝑎) = ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
47 | 46 | sumeq2dv 15515 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋(-g‘𝐺)𝑌)‘𝑎) = Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
48 | 3, 4, 12 | grpsubeq0 18758 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → ((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺) ↔ 𝑋 = 𝑌)) |
49 | 10, 5, 11, 48 | syl3anc 1371 | . . 3 ⊢ (𝜑 → ((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺) ↔ 𝑋 = 𝑌)) |
50 | 49 | ifbid 4501 | . 2 ⊢ (𝜑 → if((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺), (ϕ‘𝑁), 0) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
51 | 16, 47, 50 | 3eqtr3d 2785 | 1 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ifcif 4478 ∘ ccom 5629 Fn wfn 6479 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 ∘f cof 7598 ℂcc 10975 0cc0 10977 · cmul 10982 ℕcn 12079 ∗ccj 14907 Σcsu 15497 ϕcphi 16563 Basecbs 17010 +gcplusg 17060 0gc0g 17248 Grpcgrp 18674 invgcminusg 18675 -gcsg 18676 Abelcabl 19483 ℤ/nℤczn 20810 DChrcdchr 26486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 ax-addf 11056 ax-mulf 11057 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-disj 5063 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-supp 8053 df-tpos 8117 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-2o 8373 df-oadd 8376 df-omul 8377 df-er 8574 df-ec 8576 df-qs 8580 df-map 8693 df-pm 8694 df-ixp 8762 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fsupp 9232 df-fi 9273 df-sup 9304 df-inf 9305 df-oi 9372 df-card 9801 df-acn 9804 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-xnn0 12412 df-z 12426 df-dec 12544 df-uz 12689 df-q 12795 df-rp 12837 df-xneg 12954 df-xadd 12955 df-xmul 12956 df-ioo 13189 df-ioc 13190 df-ico 13191 df-icc 13192 df-fz 13346 df-fzo 13489 df-fl 13618 df-mod 13696 df-seq 13828 df-exp 13889 df-fac 14094 df-bc 14123 df-hash 14151 df-shft 14878 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-limsup 15280 df-clim 15297 df-rlim 15298 df-sum 15498 df-ef 15877 df-sin 15879 df-cos 15880 df-pi 15882 df-dvds 16064 df-gcd 16302 df-phi 16565 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-hom 17084 df-cco 17085 df-rest 17231 df-topn 17232 df-0g 17250 df-gsum 17251 df-topgen 17252 df-pt 17253 df-prds 17256 df-xrs 17311 df-qtop 17316 df-imas 17317 df-qus 17318 df-xps 17319 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-mulg 18798 df-subg 18849 df-nsg 18850 df-eqg 18851 df-ghm 18929 df-cntz 19020 df-od 19233 df-cmn 19484 df-abl 19485 df-mgp 19816 df-ur 19833 df-ring 19880 df-cring 19881 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-invr 20009 df-dvr 20020 df-rnghom 20054 df-drng 20095 df-subrg 20127 df-lmod 20231 df-lss 20300 df-lsp 20340 df-sra 20540 df-rgmod 20541 df-lidl 20542 df-rsp 20543 df-2idl 20609 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-fbas 20700 df-fg 20701 df-cnfld 20704 df-zring 20777 df-zrh 20811 df-zn 20814 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-lp 22393 df-perf 22394 df-cn 22484 df-cnp 22485 df-haus 22572 df-tx 22819 df-hmeo 23012 df-fil 23103 df-fm 23195 df-flim 23196 df-flf 23197 df-xms 23579 df-ms 23580 df-tms 23581 df-cncf 24147 df-limc 25136 df-dv 25137 df-log 25818 df-cxp 25819 df-dchr 26487 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |