| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchr2sum | Structured version Visualization version GIF version | ||
| Description: An orthogonality relation for Dirichlet characters: the sum of 𝑋(𝑎) · ∗𝑌(𝑎) over all 𝑎 is nonzero only when 𝑋 = 𝑌. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchr2sum.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchr2sum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchr2sum.d | ⊢ 𝐷 = (Base‘𝐺) |
| dchr2sum.b | ⊢ 𝐵 = (Base‘𝑍) |
| dchr2sum.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchr2sum.y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| dchr2sum | ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchr2sum.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
| 2 | dchr2sum.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 3 | dchr2sum.d | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
| 4 | eqid 2730 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | dchr2sum.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 6 | 1, 3 | dchrrcl 27157 | . . . . . 6 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 8 | 1 | dchrabl 27171 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
| 9 | ablgrp 19721 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 11 | dchr2sum.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
| 12 | eqid 2730 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 13 | 3, 12 | grpsubcl 18958 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋(-g‘𝐺)𝑌) ∈ 𝐷) |
| 14 | 10, 5, 11, 13 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋(-g‘𝐺)𝑌) ∈ 𝐷) |
| 15 | dchr2sum.b | . . 3 ⊢ 𝐵 = (Base‘𝑍) | |
| 16 | 1, 2, 3, 4, 14, 15 | dchrsum 27186 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋(-g‘𝐺)𝑌)‘𝑎) = if((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺), (ϕ‘𝑁), 0)) |
| 17 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐷) |
| 18 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌 ∈ 𝐷) |
| 19 | eqid 2730 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 20 | eqid 2730 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 21 | 3, 19, 20, 12 | grpsubval 18923 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋(-g‘𝐺)𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 22 | 17, 18, 21 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(-g‘𝐺)𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 23 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑁 ∈ ℕ) |
| 24 | 23, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐺 ∈ Grp) |
| 25 | 3, 20 | grpinvcl 18925 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐷) → ((invg‘𝐺)‘𝑌) ∈ 𝐷) |
| 26 | 24, 18, 25 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐷) |
| 27 | 1, 2, 3, 19, 17, 26 | dchrmul 27165 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = (𝑋 ∘f · ((invg‘𝐺)‘𝑌))) |
| 28 | 22, 27 | eqtrd 2765 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(-g‘𝐺)𝑌) = (𝑋 ∘f · ((invg‘𝐺)‘𝑌))) |
| 29 | 28 | fveq1d 6862 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋(-g‘𝐺)𝑌)‘𝑎) = ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎)) |
| 30 | 1, 2, 3, 15, 17 | dchrf 27159 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋:𝐵⟶ℂ) |
| 31 | 30 | ffnd 6691 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 Fn 𝐵) |
| 32 | 1, 2, 3, 15, 26 | dchrf 27159 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌):𝐵⟶ℂ) |
| 33 | 32 | ffnd 6691 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) Fn 𝐵) |
| 34 | 15 | fvexi 6874 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐵 ∈ V) |
| 36 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
| 37 | fnfvof 7672 | . . . . 5 ⊢ (((𝑋 Fn 𝐵 ∧ ((invg‘𝐺)‘𝑌) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑎 ∈ 𝐵)) → ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎) = ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎))) | |
| 38 | 31, 33, 35, 36, 37 | syl22anc 838 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎) = ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎))) |
| 39 | 1, 3, 18, 20 | dchrinv 27178 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) = (∗ ∘ 𝑌)) |
| 40 | 39 | fveq1d 6862 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (((invg‘𝐺)‘𝑌)‘𝑎) = ((∗ ∘ 𝑌)‘𝑎)) |
| 41 | 1, 2, 3, 15, 18 | dchrf 27159 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌:𝐵⟶ℂ) |
| 42 | fvco3 6962 | . . . . . . 7 ⊢ ((𝑌:𝐵⟶ℂ ∧ 𝑎 ∈ 𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) | |
| 43 | 41, 36, 42 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) |
| 44 | 40, 43 | eqtrd 2765 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (((invg‘𝐺)‘𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) |
| 45 | 44 | oveq2d 7405 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎)) = ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
| 46 | 29, 38, 45 | 3eqtrd 2769 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋(-g‘𝐺)𝑌)‘𝑎) = ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
| 47 | 46 | sumeq2dv 15674 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋(-g‘𝐺)𝑌)‘𝑎) = Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
| 48 | 3, 4, 12 | grpsubeq0 18964 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → ((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺) ↔ 𝑋 = 𝑌)) |
| 49 | 10, 5, 11, 48 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺) ↔ 𝑋 = 𝑌)) |
| 50 | 49 | ifbid 4514 | . 2 ⊢ (𝜑 → if((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺), (ϕ‘𝑁), 0) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
| 51 | 16, 47, 50 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ifcif 4490 ∘ ccom 5644 Fn wfn 6508 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ∘f cof 7653 ℂcc 11072 0cc0 11074 · cmul 11079 ℕcn 12187 ∗ccj 15068 Σcsu 15658 ϕcphi 16740 Basecbs 17185 +gcplusg 17226 0gc0g 17408 Grpcgrp 18871 invgcminusg 18872 -gcsg 18873 Abelcabl 19717 ℤ/nℤczn 21418 DChrcdchr 27149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-disj 5077 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-omul 8441 df-er 8673 df-ec 8675 df-qs 8679 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-acn 9901 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-xnn0 12522 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ioo 13316 df-ioc 13317 df-ico 13318 df-icc 13319 df-fz 13475 df-fzo 13622 df-fl 13760 df-mod 13838 df-seq 13973 df-exp 14033 df-fac 14245 df-bc 14274 df-hash 14302 df-shft 15039 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-limsup 15443 df-clim 15460 df-rlim 15461 df-sum 15659 df-ef 16039 df-sin 16041 df-cos 16042 df-pi 16044 df-dvds 16229 df-gcd 16471 df-phi 16742 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-qus 17478 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-nsg 19062 df-eqg 19063 df-ghm 19151 df-cntz 19255 df-od 19464 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-drng 20646 df-lmod 20774 df-lss 20844 df-lsp 20884 df-sra 21086 df-rgmod 21087 df-lidl 21124 df-rsp 21125 df-2idl 21166 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-zring 21363 df-zrh 21419 df-zn 21422 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-haus 23208 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-limc 25773 df-dv 25774 df-log 26471 df-cxp 26472 df-dchr 27150 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |