MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr2sum Structured version   Visualization version   GIF version

Theorem dchr2sum 25861
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑋(𝑎) · ∗𝑌(𝑎) over all 𝑎 is nonzero only when 𝑋 = 𝑌. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr2sum.g 𝐺 = (DChr‘𝑁)
dchr2sum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr2sum.d 𝐷 = (Base‘𝐺)
dchr2sum.b 𝐵 = (Base‘𝑍)
dchr2sum.x (𝜑𝑋𝐷)
dchr2sum.y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchr2sum (𝜑 → Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
Distinct variable groups:   𝐵,𝑎   𝐺,𝑎   𝜑,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝑁(𝑎)

Proof of Theorem dchr2sum
StepHypRef Expression
1 dchr2sum.g . . 3 𝐺 = (DChr‘𝑁)
2 dchr2sum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchr2sum.d . . 3 𝐷 = (Base‘𝐺)
4 eqid 2801 . . 3 (0g𝐺) = (0g𝐺)
5 dchr2sum.x . . . . . 6 (𝜑𝑋𝐷)
61, 3dchrrcl 25828 . . . . . 6 (𝑋𝐷𝑁 ∈ ℕ)
75, 6syl 17 . . . . 5 (𝜑𝑁 ∈ ℕ)
81dchrabl 25842 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
9 ablgrp 18907 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
107, 8, 93syl 18 . . . 4 (𝜑𝐺 ∈ Grp)
11 dchr2sum.y . . . 4 (𝜑𝑌𝐷)
12 eqid 2801 . . . . 5 (-g𝐺) = (-g𝐺)
133, 12grpsubcl 18175 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐷𝑌𝐷) → (𝑋(-g𝐺)𝑌) ∈ 𝐷)
1410, 5, 11, 13syl3anc 1368 . . 3 (𝜑 → (𝑋(-g𝐺)𝑌) ∈ 𝐷)
15 dchr2sum.b . . 3 𝐵 = (Base‘𝑍)
161, 2, 3, 4, 14, 15dchrsum 25857 . 2 (𝜑 → Σ𝑎𝐵 ((𝑋(-g𝐺)𝑌)‘𝑎) = if((𝑋(-g𝐺)𝑌) = (0g𝐺), (ϕ‘𝑁), 0))
175adantr 484 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑋𝐷)
1811adantr 484 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑌𝐷)
19 eqid 2801 . . . . . . . 8 (+g𝐺) = (+g𝐺)
20 eqid 2801 . . . . . . . 8 (invg𝐺) = (invg𝐺)
213, 19, 20, 12grpsubval 18145 . . . . . . 7 ((𝑋𝐷𝑌𝐷) → (𝑋(-g𝐺)𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2217, 18, 21syl2anc 587 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋(-g𝐺)𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
237adantr 484 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑁 ∈ ℕ)
2423, 8, 93syl 18 . . . . . . . 8 ((𝜑𝑎𝐵) → 𝐺 ∈ Grp)
253, 20grpinvcl 18147 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑌𝐷) → ((invg𝐺)‘𝑌) ∈ 𝐷)
2624, 18, 25syl2anc 587 . . . . . . 7 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐷)
271, 2, 3, 19, 17, 26dchrmul 25836 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = (𝑋f · ((invg𝐺)‘𝑌)))
2822, 27eqtrd 2836 . . . . 5 ((𝜑𝑎𝐵) → (𝑋(-g𝐺)𝑌) = (𝑋f · ((invg𝐺)‘𝑌)))
2928fveq1d 6651 . . . 4 ((𝜑𝑎𝐵) → ((𝑋(-g𝐺)𝑌)‘𝑎) = ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎))
301, 2, 3, 15, 17dchrf 25830 . . . . . 6 ((𝜑𝑎𝐵) → 𝑋:𝐵⟶ℂ)
3130ffnd 6492 . . . . 5 ((𝜑𝑎𝐵) → 𝑋 Fn 𝐵)
321, 2, 3, 15, 26dchrf 25830 . . . . . 6 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌):𝐵⟶ℂ)
3332ffnd 6492 . . . . 5 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) Fn 𝐵)
3415fvexi 6663 . . . . . 6 𝐵 ∈ V
3534a1i 11 . . . . 5 ((𝜑𝑎𝐵) → 𝐵 ∈ V)
36 simpr 488 . . . . 5 ((𝜑𝑎𝐵) → 𝑎𝐵)
37 fnfvof 7407 . . . . 5 (((𝑋 Fn 𝐵 ∧ ((invg𝐺)‘𝑌) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑎𝐵)) → ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎) = ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)))
3831, 33, 35, 36, 37syl22anc 837 . . . 4 ((𝜑𝑎𝐵) → ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎) = ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)))
391, 3, 18, 20dchrinv 25849 . . . . . . 7 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) = (∗ ∘ 𝑌))
4039fveq1d 6651 . . . . . 6 ((𝜑𝑎𝐵) → (((invg𝐺)‘𝑌)‘𝑎) = ((∗ ∘ 𝑌)‘𝑎))
411, 2, 3, 15, 18dchrf 25830 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑌:𝐵⟶ℂ)
42 fvco3 6741 . . . . . . 7 ((𝑌:𝐵⟶ℂ ∧ 𝑎𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4341, 36, 42syl2anc 587 . . . . . 6 ((𝜑𝑎𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4440, 43eqtrd 2836 . . . . 5 ((𝜑𝑎𝐵) → (((invg𝐺)‘𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4544oveq2d 7155 . . . 4 ((𝜑𝑎𝐵) → ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)) = ((𝑋𝑎) · (∗‘(𝑌𝑎))))
4629, 38, 453eqtrd 2840 . . 3 ((𝜑𝑎𝐵) → ((𝑋(-g𝐺)𝑌)‘𝑎) = ((𝑋𝑎) · (∗‘(𝑌𝑎))))
4746sumeq2dv 15056 . 2 (𝜑 → Σ𝑎𝐵 ((𝑋(-g𝐺)𝑌)‘𝑎) = Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))))
483, 4, 12grpsubeq0 18181 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐷𝑌𝐷) → ((𝑋(-g𝐺)𝑌) = (0g𝐺) ↔ 𝑋 = 𝑌))
4910, 5, 11, 48syl3anc 1368 . . 3 (𝜑 → ((𝑋(-g𝐺)𝑌) = (0g𝐺) ↔ 𝑋 = 𝑌))
5049ifbid 4450 . 2 (𝜑 → if((𝑋(-g𝐺)𝑌) = (0g𝐺), (ϕ‘𝑁), 0) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
5116, 47, 503eqtr3d 2844 1 (𝜑 → Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  ifcif 4428  ccom 5527   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7139  f cof 7391  cc 10528  0cc0 10530   · cmul 10535  cn 11629  ccj 14451  Σcsu 15038  ϕcphi 16095  Basecbs 16479  +gcplusg 16561  0gc0g 16709  Grpcgrp 18099  invgcminusg 18100  -gcsg 18101  Abelcabl 18903  ℤ/nczn 20200  DChrcdchr 25820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-ec 8278  df-qs 8282  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-pi 15422  df-dvds 15604  df-gcd 15838  df-phi 16097  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-qus 16778  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-nsg 18273  df-eqg 18274  df-ghm 18352  df-cntz 18443  df-od 18652  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-cring 19297  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19501  df-subrg 19530  df-lmod 19633  df-lss 19701  df-lsp 19741  df-sra 19941  df-rgmod 19942  df-lidl 19943  df-rsp 19944  df-2idl 20002  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-zring 20168  df-zrh 20201  df-zn 20204  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474  df-log 25152  df-cxp 25153  df-dchr 25821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator