Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchr2sum | Structured version Visualization version GIF version |
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑋(𝑎) · ∗𝑌(𝑎) over all 𝑎 is nonzero only when 𝑋 = 𝑌. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchr2sum.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchr2sum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchr2sum.d | ⊢ 𝐷 = (Base‘𝐺) |
dchr2sum.b | ⊢ 𝐵 = (Base‘𝑍) |
dchr2sum.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchr2sum.y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
Ref | Expression |
---|---|
dchr2sum | ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchr2sum.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchr2sum.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchr2sum.d | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
4 | eqid 2738 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | dchr2sum.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
6 | 1, 3 | dchrrcl 26293 | . . . . . 6 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
8 | 1 | dchrabl 26307 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
9 | ablgrp 19306 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
11 | dchr2sum.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
12 | eqid 2738 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
13 | 3, 12 | grpsubcl 18570 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋(-g‘𝐺)𝑌) ∈ 𝐷) |
14 | 10, 5, 11, 13 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑋(-g‘𝐺)𝑌) ∈ 𝐷) |
15 | dchr2sum.b | . . 3 ⊢ 𝐵 = (Base‘𝑍) | |
16 | 1, 2, 3, 4, 14, 15 | dchrsum 26322 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋(-g‘𝐺)𝑌)‘𝑎) = if((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺), (ϕ‘𝑁), 0)) |
17 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐷) |
18 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌 ∈ 𝐷) |
19 | eqid 2738 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
20 | eqid 2738 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
21 | 3, 19, 20, 12 | grpsubval 18540 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋(-g‘𝐺)𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
22 | 17, 18, 21 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(-g‘𝐺)𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
23 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑁 ∈ ℕ) |
24 | 23, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐺 ∈ Grp) |
25 | 3, 20 | grpinvcl 18542 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐷) → ((invg‘𝐺)‘𝑌) ∈ 𝐷) |
26 | 24, 18, 25 | syl2anc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐷) |
27 | 1, 2, 3, 19, 17, 26 | dchrmul 26301 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = (𝑋 ∘f · ((invg‘𝐺)‘𝑌))) |
28 | 22, 27 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(-g‘𝐺)𝑌) = (𝑋 ∘f · ((invg‘𝐺)‘𝑌))) |
29 | 28 | fveq1d 6758 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋(-g‘𝐺)𝑌)‘𝑎) = ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎)) |
30 | 1, 2, 3, 15, 17 | dchrf 26295 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋:𝐵⟶ℂ) |
31 | 30 | ffnd 6585 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 Fn 𝐵) |
32 | 1, 2, 3, 15, 26 | dchrf 26295 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌):𝐵⟶ℂ) |
33 | 32 | ffnd 6585 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) Fn 𝐵) |
34 | 15 | fvexi 6770 | . . . . . 6 ⊢ 𝐵 ∈ V |
35 | 34 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐵 ∈ V) |
36 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
37 | fnfvof 7528 | . . . . 5 ⊢ (((𝑋 Fn 𝐵 ∧ ((invg‘𝐺)‘𝑌) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑎 ∈ 𝐵)) → ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎) = ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎))) | |
38 | 31, 33, 35, 36, 37 | syl22anc 835 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎) = ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎))) |
39 | 1, 3, 18, 20 | dchrinv 26314 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) = (∗ ∘ 𝑌)) |
40 | 39 | fveq1d 6758 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (((invg‘𝐺)‘𝑌)‘𝑎) = ((∗ ∘ 𝑌)‘𝑎)) |
41 | 1, 2, 3, 15, 18 | dchrf 26295 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌:𝐵⟶ℂ) |
42 | fvco3 6849 | . . . . . . 7 ⊢ ((𝑌:𝐵⟶ℂ ∧ 𝑎 ∈ 𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) | |
43 | 41, 36, 42 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) |
44 | 40, 43 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (((invg‘𝐺)‘𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) |
45 | 44 | oveq2d 7271 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎)) = ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
46 | 29, 38, 45 | 3eqtrd 2782 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋(-g‘𝐺)𝑌)‘𝑎) = ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
47 | 46 | sumeq2dv 15343 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋(-g‘𝐺)𝑌)‘𝑎) = Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
48 | 3, 4, 12 | grpsubeq0 18576 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → ((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺) ↔ 𝑋 = 𝑌)) |
49 | 10, 5, 11, 48 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺) ↔ 𝑋 = 𝑌)) |
50 | 49 | ifbid 4479 | . 2 ⊢ (𝜑 → if((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺), (ϕ‘𝑁), 0) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
51 | 16, 47, 50 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ifcif 4456 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 0cc0 10802 · cmul 10807 ℕcn 11903 ∗ccj 14735 Σcsu 15325 ϕcphi 16393 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Grpcgrp 18492 invgcminusg 18493 -gcsg 18494 Abelcabl 19302 ℤ/nℤczn 20616 DChrcdchr 26285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-dvds 15892 df-gcd 16130 df-phi 16395 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-qus 17137 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-nsg 18668 df-eqg 18669 df-ghm 18747 df-cntz 18838 df-od 19051 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-rsp 20352 df-2idl 20416 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-zn 20620 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 df-dchr 26286 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |