MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr2sum Structured version   Visualization version   GIF version

Theorem dchr2sum 27326
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑋(𝑎) · ∗𝑌(𝑎) over all 𝑎 is nonzero only when 𝑋 = 𝑌. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr2sum.g 𝐺 = (DChr‘𝑁)
dchr2sum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr2sum.d 𝐷 = (Base‘𝐺)
dchr2sum.b 𝐵 = (Base‘𝑍)
dchr2sum.x (𝜑𝑋𝐷)
dchr2sum.y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchr2sum (𝜑 → Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
Distinct variable groups:   𝐵,𝑎   𝐺,𝑎   𝜑,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝑁(𝑎)

Proof of Theorem dchr2sum
StepHypRef Expression
1 dchr2sum.g . . 3 𝐺 = (DChr‘𝑁)
2 dchr2sum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchr2sum.d . . 3 𝐷 = (Base‘𝐺)
4 eqid 2734 . . 3 (0g𝐺) = (0g𝐺)
5 dchr2sum.x . . . . . 6 (𝜑𝑋𝐷)
61, 3dchrrcl 27293 . . . . . 6 (𝑋𝐷𝑁 ∈ ℕ)
75, 6syl 17 . . . . 5 (𝜑𝑁 ∈ ℕ)
81dchrabl 27307 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
9 ablgrp 19822 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
107, 8, 93syl 18 . . . 4 (𝜑𝐺 ∈ Grp)
11 dchr2sum.y . . . 4 (𝜑𝑌𝐷)
12 eqid 2734 . . . . 5 (-g𝐺) = (-g𝐺)
133, 12grpsubcl 19055 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐷𝑌𝐷) → (𝑋(-g𝐺)𝑌) ∈ 𝐷)
1410, 5, 11, 13syl3anc 1371 . . 3 (𝜑 → (𝑋(-g𝐺)𝑌) ∈ 𝐷)
15 dchr2sum.b . . 3 𝐵 = (Base‘𝑍)
161, 2, 3, 4, 14, 15dchrsum 27322 . 2 (𝜑 → Σ𝑎𝐵 ((𝑋(-g𝐺)𝑌)‘𝑎) = if((𝑋(-g𝐺)𝑌) = (0g𝐺), (ϕ‘𝑁), 0))
175adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑋𝐷)
1811adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑌𝐷)
19 eqid 2734 . . . . . . . 8 (+g𝐺) = (+g𝐺)
20 eqid 2734 . . . . . . . 8 (invg𝐺) = (invg𝐺)
213, 19, 20, 12grpsubval 19020 . . . . . . 7 ((𝑋𝐷𝑌𝐷) → (𝑋(-g𝐺)𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2217, 18, 21syl2anc 583 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋(-g𝐺)𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
237adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑁 ∈ ℕ)
2423, 8, 93syl 18 . . . . . . . 8 ((𝜑𝑎𝐵) → 𝐺 ∈ Grp)
253, 20grpinvcl 19022 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑌𝐷) → ((invg𝐺)‘𝑌) ∈ 𝐷)
2624, 18, 25syl2anc 583 . . . . . . 7 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐷)
271, 2, 3, 19, 17, 26dchrmul 27301 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = (𝑋f · ((invg𝐺)‘𝑌)))
2822, 27eqtrd 2774 . . . . 5 ((𝜑𝑎𝐵) → (𝑋(-g𝐺)𝑌) = (𝑋f · ((invg𝐺)‘𝑌)))
2928fveq1d 6921 . . . 4 ((𝜑𝑎𝐵) → ((𝑋(-g𝐺)𝑌)‘𝑎) = ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎))
301, 2, 3, 15, 17dchrf 27295 . . . . . 6 ((𝜑𝑎𝐵) → 𝑋:𝐵⟶ℂ)
3130ffnd 6747 . . . . 5 ((𝜑𝑎𝐵) → 𝑋 Fn 𝐵)
321, 2, 3, 15, 26dchrf 27295 . . . . . 6 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌):𝐵⟶ℂ)
3332ffnd 6747 . . . . 5 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) Fn 𝐵)
3415fvexi 6933 . . . . . 6 𝐵 ∈ V
3534a1i 11 . . . . 5 ((𝜑𝑎𝐵) → 𝐵 ∈ V)
36 simpr 484 . . . . 5 ((𝜑𝑎𝐵) → 𝑎𝐵)
37 fnfvof 7727 . . . . 5 (((𝑋 Fn 𝐵 ∧ ((invg𝐺)‘𝑌) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑎𝐵)) → ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎) = ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)))
3831, 33, 35, 36, 37syl22anc 838 . . . 4 ((𝜑𝑎𝐵) → ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎) = ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)))
391, 3, 18, 20dchrinv 27314 . . . . . . 7 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) = (∗ ∘ 𝑌))
4039fveq1d 6921 . . . . . 6 ((𝜑𝑎𝐵) → (((invg𝐺)‘𝑌)‘𝑎) = ((∗ ∘ 𝑌)‘𝑎))
411, 2, 3, 15, 18dchrf 27295 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑌:𝐵⟶ℂ)
42 fvco3 7019 . . . . . . 7 ((𝑌:𝐵⟶ℂ ∧ 𝑎𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4341, 36, 42syl2anc 583 . . . . . 6 ((𝜑𝑎𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4440, 43eqtrd 2774 . . . . 5 ((𝜑𝑎𝐵) → (((invg𝐺)‘𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4544oveq2d 7461 . . . 4 ((𝜑𝑎𝐵) → ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)) = ((𝑋𝑎) · (∗‘(𝑌𝑎))))
4629, 38, 453eqtrd 2778 . . 3 ((𝜑𝑎𝐵) → ((𝑋(-g𝐺)𝑌)‘𝑎) = ((𝑋𝑎) · (∗‘(𝑌𝑎))))
4746sumeq2dv 15746 . 2 (𝜑 → Σ𝑎𝐵 ((𝑋(-g𝐺)𝑌)‘𝑎) = Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))))
483, 4, 12grpsubeq0 19061 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐷𝑌𝐷) → ((𝑋(-g𝐺)𝑌) = (0g𝐺) ↔ 𝑋 = 𝑌))
4910, 5, 11, 48syl3anc 1371 . . 3 (𝜑 → ((𝑋(-g𝐺)𝑌) = (0g𝐺) ↔ 𝑋 = 𝑌))
5049ifbid 4571 . 2 (𝜑 → if((𝑋(-g𝐺)𝑌) = (0g𝐺), (ϕ‘𝑁), 0) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
5116, 47, 503eqtr3d 2782 1 (𝜑 → Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2103  Vcvv 3482  ifcif 4548  ccom 5703   Fn wfn 6567  wf 6568  cfv 6572  (class class class)co 7445  f cof 7708  cc 11178  0cc0 11180   · cmul 11185  cn 12289  ccj 15141  Σcsu 15730  ϕcphi 16806  Basecbs 17253  +gcplusg 17306  0gc0g 17494  Grpcgrp 18968  invgcminusg 18969  -gcsg 18970  Abelcabl 19818  ℤ/nczn 21531  DChrcdchr 27285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-inf2 9706  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258  ax-addf 11259  ax-mulf 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-disj 5137  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-of 7710  df-om 7900  df-1st 8026  df-2nd 8027  df-supp 8198  df-tpos 8263  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-oadd 8522  df-omul 8523  df-er 8759  df-ec 8761  df-qs 8765  df-map 8882  df-pm 8883  df-ixp 8952  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-fsupp 9428  df-fi 9476  df-sup 9507  df-inf 9508  df-oi 9575  df-card 10004  df-acn 10007  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-xnn0 12622  df-z 12636  df-dec 12755  df-uz 12900  df-q 13010  df-rp 13054  df-xneg 13171  df-xadd 13172  df-xmul 13173  df-ioo 13407  df-ioc 13408  df-ico 13409  df-icc 13410  df-fz 13564  df-fzo 13708  df-fl 13839  df-mod 13917  df-seq 14049  df-exp 14109  df-fac 14319  df-bc 14348  df-hash 14376  df-shft 15112  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-limsup 15513  df-clim 15530  df-rlim 15531  df-sum 15731  df-ef 16109  df-sin 16111  df-cos 16112  df-pi 16114  df-dvds 16297  df-gcd 16535  df-phi 16808  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-starv 17321  df-sca 17322  df-vsca 17323  df-ip 17324  df-tset 17325  df-ple 17326  df-ds 17328  df-unif 17329  df-hom 17330  df-cco 17331  df-rest 17477  df-topn 17478  df-0g 17496  df-gsum 17497  df-topgen 17498  df-pt 17499  df-prds 17502  df-xrs 17557  df-qtop 17562  df-imas 17563  df-qus 17564  df-xps 17565  df-mre 17639  df-mrc 17640  df-acs 17642  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-mhm 18813  df-submnd 18814  df-grp 18971  df-minusg 18972  df-sbg 18973  df-mulg 19103  df-subg 19158  df-nsg 19159  df-eqg 19160  df-ghm 19248  df-cntz 19352  df-od 19565  df-cmn 19819  df-abl 19820  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-cring 20258  df-oppr 20355  df-dvdsr 20378  df-unit 20379  df-invr 20409  df-dvr 20422  df-rhm 20493  df-subrng 20567  df-subrg 20592  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-top 22914  df-topon 22931  df-topsp 22953  df-bases 22967  df-cld 23041  df-ntr 23042  df-cls 23043  df-nei 23120  df-lp 23158  df-perf 23159  df-cn 23249  df-cnp 23250  df-haus 23337  df-tx 23584  df-hmeo 23777  df-fil 23868  df-fm 23960  df-flim 23961  df-flf 23962  df-xms 24344  df-ms 24345  df-tms 24346  df-cncf 24916  df-limc 25913  df-dv 25914  df-log 26607  df-cxp 26608  df-dchr 27286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator