MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr2sum Structured version   Visualization version   GIF version

Theorem dchr2sum 25450
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑋(𝑎) · ∗𝑌(𝑎) over all 𝑎 is nonzero only when 𝑋 = 𝑌. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr2sum.g 𝐺 = (DChr‘𝑁)
dchr2sum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr2sum.d 𝐷 = (Base‘𝐺)
dchr2sum.b 𝐵 = (Base‘𝑍)
dchr2sum.x (𝜑𝑋𝐷)
dchr2sum.y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchr2sum (𝜑 → Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
Distinct variable groups:   𝐵,𝑎   𝐺,𝑎   𝜑,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝑁(𝑎)

Proof of Theorem dchr2sum
StepHypRef Expression
1 dchr2sum.g . . 3 𝐺 = (DChr‘𝑁)
2 dchr2sum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchr2sum.d . . 3 𝐷 = (Base‘𝐺)
4 eqid 2778 . . 3 (0g𝐺) = (0g𝐺)
5 dchr2sum.x . . . . . 6 (𝜑𝑋𝐷)
61, 3dchrrcl 25417 . . . . . 6 (𝑋𝐷𝑁 ∈ ℕ)
75, 6syl 17 . . . . 5 (𝜑𝑁 ∈ ℕ)
81dchrabl 25431 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
9 ablgrp 18584 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
107, 8, 93syl 18 . . . 4 (𝜑𝐺 ∈ Grp)
11 dchr2sum.y . . . 4 (𝜑𝑌𝐷)
12 eqid 2778 . . . . 5 (-g𝐺) = (-g𝐺)
133, 12grpsubcl 17882 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐷𝑌𝐷) → (𝑋(-g𝐺)𝑌) ∈ 𝐷)
1410, 5, 11, 13syl3anc 1439 . . 3 (𝜑 → (𝑋(-g𝐺)𝑌) ∈ 𝐷)
15 dchr2sum.b . . 3 𝐵 = (Base‘𝑍)
161, 2, 3, 4, 14, 15dchrsum 25446 . 2 (𝜑 → Σ𝑎𝐵 ((𝑋(-g𝐺)𝑌)‘𝑎) = if((𝑋(-g𝐺)𝑌) = (0g𝐺), (ϕ‘𝑁), 0))
175adantr 474 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑋𝐷)
1811adantr 474 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑌𝐷)
19 eqid 2778 . . . . . . . 8 (+g𝐺) = (+g𝐺)
20 eqid 2778 . . . . . . . 8 (invg𝐺) = (invg𝐺)
213, 19, 20, 12grpsubval 17852 . . . . . . 7 ((𝑋𝐷𝑌𝐷) → (𝑋(-g𝐺)𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2217, 18, 21syl2anc 579 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋(-g𝐺)𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
237adantr 474 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑁 ∈ ℕ)
2423, 8, 93syl 18 . . . . . . . 8 ((𝜑𝑎𝐵) → 𝐺 ∈ Grp)
253, 20grpinvcl 17854 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑌𝐷) → ((invg𝐺)‘𝑌) ∈ 𝐷)
2624, 18, 25syl2anc 579 . . . . . . 7 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐷)
271, 2, 3, 19, 17, 26dchrmul 25425 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = (𝑋𝑓 · ((invg𝐺)‘𝑌)))
2822, 27eqtrd 2814 . . . . 5 ((𝜑𝑎𝐵) → (𝑋(-g𝐺)𝑌) = (𝑋𝑓 · ((invg𝐺)‘𝑌)))
2928fveq1d 6448 . . . 4 ((𝜑𝑎𝐵) → ((𝑋(-g𝐺)𝑌)‘𝑎) = ((𝑋𝑓 · ((invg𝐺)‘𝑌))‘𝑎))
301, 2, 3, 15, 17dchrf 25419 . . . . . 6 ((𝜑𝑎𝐵) → 𝑋:𝐵⟶ℂ)
3130ffnd 6292 . . . . 5 ((𝜑𝑎𝐵) → 𝑋 Fn 𝐵)
321, 2, 3, 15, 26dchrf 25419 . . . . . 6 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌):𝐵⟶ℂ)
3332ffnd 6292 . . . . 5 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) Fn 𝐵)
3415fvexi 6460 . . . . . 6 𝐵 ∈ V
3534a1i 11 . . . . 5 ((𝜑𝑎𝐵) → 𝐵 ∈ V)
36 simpr 479 . . . . 5 ((𝜑𝑎𝐵) → 𝑎𝐵)
37 fnfvof 7188 . . . . 5 (((𝑋 Fn 𝐵 ∧ ((invg𝐺)‘𝑌) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑎𝐵)) → ((𝑋𝑓 · ((invg𝐺)‘𝑌))‘𝑎) = ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)))
3831, 33, 35, 36, 37syl22anc 829 . . . 4 ((𝜑𝑎𝐵) → ((𝑋𝑓 · ((invg𝐺)‘𝑌))‘𝑎) = ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)))
391, 3, 18, 20dchrinv 25438 . . . . . . 7 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) = (∗ ∘ 𝑌))
4039fveq1d 6448 . . . . . 6 ((𝜑𝑎𝐵) → (((invg𝐺)‘𝑌)‘𝑎) = ((∗ ∘ 𝑌)‘𝑎))
411, 2, 3, 15, 18dchrf 25419 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑌:𝐵⟶ℂ)
42 fvco3 6535 . . . . . . 7 ((𝑌:𝐵⟶ℂ ∧ 𝑎𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4341, 36, 42syl2anc 579 . . . . . 6 ((𝜑𝑎𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4440, 43eqtrd 2814 . . . . 5 ((𝜑𝑎𝐵) → (((invg𝐺)‘𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4544oveq2d 6938 . . . 4 ((𝜑𝑎𝐵) → ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)) = ((𝑋𝑎) · (∗‘(𝑌𝑎))))
4629, 38, 453eqtrd 2818 . . 3 ((𝜑𝑎𝐵) → ((𝑋(-g𝐺)𝑌)‘𝑎) = ((𝑋𝑎) · (∗‘(𝑌𝑎))))
4746sumeq2dv 14841 . 2 (𝜑 → Σ𝑎𝐵 ((𝑋(-g𝐺)𝑌)‘𝑎) = Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))))
483, 4, 12grpsubeq0 17888 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐷𝑌𝐷) → ((𝑋(-g𝐺)𝑌) = (0g𝐺) ↔ 𝑋 = 𝑌))
4910, 5, 11, 48syl3anc 1439 . . 3 (𝜑 → ((𝑋(-g𝐺)𝑌) = (0g𝐺) ↔ 𝑋 = 𝑌))
5049ifbid 4329 . 2 (𝜑 → if((𝑋(-g𝐺)𝑌) = (0g𝐺), (ϕ‘𝑁), 0) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
5116, 47, 503eqtr3d 2822 1 (𝜑 → Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  ifcif 4307  ccom 5359   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  𝑓 cof 7172  cc 10270  0cc0 10272   · cmul 10277  cn 11374  ccj 14243  Σcsu 14824  ϕcphi 15873  Basecbs 16255  +gcplusg 16338  0gc0g 16486  Grpcgrp 17809  invgcminusg 17810  -gcsg 17811  Abelcabl 18580  ℤ/nczn 20247  DChrcdchr 25409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-omul 7848  df-er 8026  df-ec 8028  df-qs 8032  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-xnn0 11715  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-dvds 15388  df-gcd 15623  df-phi 15875  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-qus 16555  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-subg 17975  df-nsg 17976  df-eqg 17977  df-ghm 18042  df-cntz 18133  df-od 18332  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-rnghom 19104  df-drng 19141  df-subrg 19170  df-lmod 19257  df-lss 19325  df-lsp 19367  df-sra 19569  df-rgmod 19570  df-lidl 19571  df-rsp 19572  df-2idl 19629  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-zring 20215  df-zrh 20248  df-zn 20251  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-cxp 24741  df-dchr 25410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator