Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchr2sum | Structured version Visualization version GIF version |
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑋(𝑎) · ∗𝑌(𝑎) over all 𝑎 is nonzero only when 𝑋 = 𝑌. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchr2sum.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchr2sum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchr2sum.d | ⊢ 𝐷 = (Base‘𝐺) |
dchr2sum.b | ⊢ 𝐵 = (Base‘𝑍) |
dchr2sum.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchr2sum.y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
Ref | Expression |
---|---|
dchr2sum | ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchr2sum.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchr2sum.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchr2sum.d | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
4 | eqid 2738 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | dchr2sum.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
6 | 1, 3 | dchrrcl 26388 | . . . . . 6 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
8 | 1 | dchrabl 26402 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
9 | ablgrp 19391 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
11 | dchr2sum.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
12 | eqid 2738 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
13 | 3, 12 | grpsubcl 18655 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋(-g‘𝐺)𝑌) ∈ 𝐷) |
14 | 10, 5, 11, 13 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑋(-g‘𝐺)𝑌) ∈ 𝐷) |
15 | dchr2sum.b | . . 3 ⊢ 𝐵 = (Base‘𝑍) | |
16 | 1, 2, 3, 4, 14, 15 | dchrsum 26417 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋(-g‘𝐺)𝑌)‘𝑎) = if((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺), (ϕ‘𝑁), 0)) |
17 | 5 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐷) |
18 | 11 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌 ∈ 𝐷) |
19 | eqid 2738 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
20 | eqid 2738 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
21 | 3, 19, 20, 12 | grpsubval 18625 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋(-g‘𝐺)𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
22 | 17, 18, 21 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(-g‘𝐺)𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
23 | 7 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑁 ∈ ℕ) |
24 | 23, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐺 ∈ Grp) |
25 | 3, 20 | grpinvcl 18627 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐷) → ((invg‘𝐺)‘𝑌) ∈ 𝐷) |
26 | 24, 18, 25 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐷) |
27 | 1, 2, 3, 19, 17, 26 | dchrmul 26396 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = (𝑋 ∘f · ((invg‘𝐺)‘𝑌))) |
28 | 22, 27 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑋(-g‘𝐺)𝑌) = (𝑋 ∘f · ((invg‘𝐺)‘𝑌))) |
29 | 28 | fveq1d 6776 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋(-g‘𝐺)𝑌)‘𝑎) = ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎)) |
30 | 1, 2, 3, 15, 17 | dchrf 26390 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋:𝐵⟶ℂ) |
31 | 30 | ffnd 6601 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 Fn 𝐵) |
32 | 1, 2, 3, 15, 26 | dchrf 26390 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌):𝐵⟶ℂ) |
33 | 32 | ffnd 6601 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) Fn 𝐵) |
34 | 15 | fvexi 6788 | . . . . . 6 ⊢ 𝐵 ∈ V |
35 | 34 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐵 ∈ V) |
36 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
37 | fnfvof 7550 | . . . . 5 ⊢ (((𝑋 Fn 𝐵 ∧ ((invg‘𝐺)‘𝑌) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑎 ∈ 𝐵)) → ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎) = ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎))) | |
38 | 31, 33, 35, 36, 37 | syl22anc 836 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋 ∘f · ((invg‘𝐺)‘𝑌))‘𝑎) = ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎))) |
39 | 1, 3, 18, 20 | dchrinv 26409 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) = (∗ ∘ 𝑌)) |
40 | 39 | fveq1d 6776 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (((invg‘𝐺)‘𝑌)‘𝑎) = ((∗ ∘ 𝑌)‘𝑎)) |
41 | 1, 2, 3, 15, 18 | dchrf 26390 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌:𝐵⟶ℂ) |
42 | fvco3 6867 | . . . . . . 7 ⊢ ((𝑌:𝐵⟶ℂ ∧ 𝑎 ∈ 𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) | |
43 | 41, 36, 42 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) |
44 | 40, 43 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (((invg‘𝐺)‘𝑌)‘𝑎) = (∗‘(𝑌‘𝑎))) |
45 | 44 | oveq2d 7291 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋‘𝑎) · (((invg‘𝐺)‘𝑌)‘𝑎)) = ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
46 | 29, 38, 45 | 3eqtrd 2782 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑋(-g‘𝐺)𝑌)‘𝑎) = ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
47 | 46 | sumeq2dv 15415 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋(-g‘𝐺)𝑌)‘𝑎) = Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎)))) |
48 | 3, 4, 12 | grpsubeq0 18661 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → ((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺) ↔ 𝑋 = 𝑌)) |
49 | 10, 5, 11, 48 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺) ↔ 𝑋 = 𝑌)) |
50 | 49 | ifbid 4482 | . 2 ⊢ (𝜑 → if((𝑋(-g‘𝐺)𝑌) = (0g‘𝐺), (ϕ‘𝑁), 0) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
51 | 16, 47, 50 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → Σ𝑎 ∈ 𝐵 ((𝑋‘𝑎) · (∗‘(𝑌‘𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ifcif 4459 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 ℂcc 10869 0cc0 10871 · cmul 10876 ℕcn 11973 ∗ccj 14807 Σcsu 15397 ϕcphi 16465 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Grpcgrp 18577 invgcminusg 18578 -gcsg 18579 Abelcabl 19387 ℤ/nℤczn 20704 DChrcdchr 26380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-dvds 15964 df-gcd 16202 df-phi 16467 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-qus 17220 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-nsg 18753 df-eqg 18754 df-ghm 18832 df-cntz 18923 df-od 19136 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-rnghom 19959 df-drng 19993 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-sra 20434 df-rgmod 20435 df-lidl 20436 df-rsp 20437 df-2idl 20503 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-zring 20671 df-zrh 20705 df-zn 20708 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-limc 25030 df-dv 25031 df-log 25712 df-cxp 25713 df-dchr 26381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |