![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchr2sum | Structured version Visualization version GIF version |
Description: An orthogonality relation for Dirichlet characters: the sum of π(π) Β· βπ(π) over all π is nonzero only when π = π. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchr2sum.g | β’ πΊ = (DChrβπ) |
dchr2sum.z | β’ π = (β€/nβ€βπ) |
dchr2sum.d | β’ π· = (BaseβπΊ) |
dchr2sum.b | β’ π΅ = (Baseβπ) |
dchr2sum.x | β’ (π β π β π·) |
dchr2sum.y | β’ (π β π β π·) |
Ref | Expression |
---|---|
dchr2sum | β’ (π β Ξ£π β π΅ ((πβπ) Β· (ββ(πβπ))) = if(π = π, (Οβπ), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchr2sum.g | . . 3 β’ πΊ = (DChrβπ) | |
2 | dchr2sum.z | . . 3 β’ π = (β€/nβ€βπ) | |
3 | dchr2sum.d | . . 3 β’ π· = (BaseβπΊ) | |
4 | eqid 2728 | . . 3 β’ (0gβπΊ) = (0gβπΊ) | |
5 | dchr2sum.x | . . . . . 6 β’ (π β π β π·) | |
6 | 1, 3 | dchrrcl 27201 | . . . . . 6 β’ (π β π· β π β β) |
7 | 5, 6 | syl 17 | . . . . 5 β’ (π β π β β) |
8 | 1 | dchrabl 27215 | . . . . 5 β’ (π β β β πΊ β Abel) |
9 | ablgrp 19754 | . . . . 5 β’ (πΊ β Abel β πΊ β Grp) | |
10 | 7, 8, 9 | 3syl 18 | . . . 4 β’ (π β πΊ β Grp) |
11 | dchr2sum.y | . . . 4 β’ (π β π β π·) | |
12 | eqid 2728 | . . . . 5 β’ (-gβπΊ) = (-gβπΊ) | |
13 | 3, 12 | grpsubcl 18990 | . . . 4 β’ ((πΊ β Grp β§ π β π· β§ π β π·) β (π(-gβπΊ)π) β π·) |
14 | 10, 5, 11, 13 | syl3anc 1368 | . . 3 β’ (π β (π(-gβπΊ)π) β π·) |
15 | dchr2sum.b | . . 3 β’ π΅ = (Baseβπ) | |
16 | 1, 2, 3, 4, 14, 15 | dchrsum 27230 | . 2 β’ (π β Ξ£π β π΅ ((π(-gβπΊ)π)βπ) = if((π(-gβπΊ)π) = (0gβπΊ), (Οβπ), 0)) |
17 | 5 | adantr 479 | . . . . . . 7 β’ ((π β§ π β π΅) β π β π·) |
18 | 11 | adantr 479 | . . . . . . 7 β’ ((π β§ π β π΅) β π β π·) |
19 | eqid 2728 | . . . . . . . 8 β’ (+gβπΊ) = (+gβπΊ) | |
20 | eqid 2728 | . . . . . . . 8 β’ (invgβπΊ) = (invgβπΊ) | |
21 | 3, 19, 20, 12 | grpsubval 18956 | . . . . . . 7 β’ ((π β π· β§ π β π·) β (π(-gβπΊ)π) = (π(+gβπΊ)((invgβπΊ)βπ))) |
22 | 17, 18, 21 | syl2anc 582 | . . . . . 6 β’ ((π β§ π β π΅) β (π(-gβπΊ)π) = (π(+gβπΊ)((invgβπΊ)βπ))) |
23 | 7 | adantr 479 | . . . . . . . . 9 β’ ((π β§ π β π΅) β π β β) |
24 | 23, 8, 9 | 3syl 18 | . . . . . . . 8 β’ ((π β§ π β π΅) β πΊ β Grp) |
25 | 3, 20 | grpinvcl 18958 | . . . . . . . 8 β’ ((πΊ β Grp β§ π β π·) β ((invgβπΊ)βπ) β π·) |
26 | 24, 18, 25 | syl2anc 582 | . . . . . . 7 β’ ((π β§ π β π΅) β ((invgβπΊ)βπ) β π·) |
27 | 1, 2, 3, 19, 17, 26 | dchrmul 27209 | . . . . . 6 β’ ((π β§ π β π΅) β (π(+gβπΊ)((invgβπΊ)βπ)) = (π βf Β· ((invgβπΊ)βπ))) |
28 | 22, 27 | eqtrd 2768 | . . . . 5 β’ ((π β§ π β π΅) β (π(-gβπΊ)π) = (π βf Β· ((invgβπΊ)βπ))) |
29 | 28 | fveq1d 6904 | . . . 4 β’ ((π β§ π β π΅) β ((π(-gβπΊ)π)βπ) = ((π βf Β· ((invgβπΊ)βπ))βπ)) |
30 | 1, 2, 3, 15, 17 | dchrf 27203 | . . . . . 6 β’ ((π β§ π β π΅) β π:π΅βΆβ) |
31 | 30 | ffnd 6728 | . . . . 5 β’ ((π β§ π β π΅) β π Fn π΅) |
32 | 1, 2, 3, 15, 26 | dchrf 27203 | . . . . . 6 β’ ((π β§ π β π΅) β ((invgβπΊ)βπ):π΅βΆβ) |
33 | 32 | ffnd 6728 | . . . . 5 β’ ((π β§ π β π΅) β ((invgβπΊ)βπ) Fn π΅) |
34 | 15 | fvexi 6916 | . . . . . 6 β’ π΅ β V |
35 | 34 | a1i 11 | . . . . 5 β’ ((π β§ π β π΅) β π΅ β V) |
36 | simpr 483 | . . . . 5 β’ ((π β§ π β π΅) β π β π΅) | |
37 | fnfvof 7709 | . . . . 5 β’ (((π Fn π΅ β§ ((invgβπΊ)βπ) Fn π΅) β§ (π΅ β V β§ π β π΅)) β ((π βf Β· ((invgβπΊ)βπ))βπ) = ((πβπ) Β· (((invgβπΊ)βπ)βπ))) | |
38 | 31, 33, 35, 36, 37 | syl22anc 837 | . . . 4 β’ ((π β§ π β π΅) β ((π βf Β· ((invgβπΊ)βπ))βπ) = ((πβπ) Β· (((invgβπΊ)βπ)βπ))) |
39 | 1, 3, 18, 20 | dchrinv 27222 | . . . . . . 7 β’ ((π β§ π β π΅) β ((invgβπΊ)βπ) = (β β π)) |
40 | 39 | fveq1d 6904 | . . . . . 6 β’ ((π β§ π β π΅) β (((invgβπΊ)βπ)βπ) = ((β β π)βπ)) |
41 | 1, 2, 3, 15, 18 | dchrf 27203 | . . . . . . 7 β’ ((π β§ π β π΅) β π:π΅βΆβ) |
42 | fvco3 7002 | . . . . . . 7 β’ ((π:π΅βΆβ β§ π β π΅) β ((β β π)βπ) = (ββ(πβπ))) | |
43 | 41, 36, 42 | syl2anc 582 | . . . . . 6 β’ ((π β§ π β π΅) β ((β β π)βπ) = (ββ(πβπ))) |
44 | 40, 43 | eqtrd 2768 | . . . . 5 β’ ((π β§ π β π΅) β (((invgβπΊ)βπ)βπ) = (ββ(πβπ))) |
45 | 44 | oveq2d 7442 | . . . 4 β’ ((π β§ π β π΅) β ((πβπ) Β· (((invgβπΊ)βπ)βπ)) = ((πβπ) Β· (ββ(πβπ)))) |
46 | 29, 38, 45 | 3eqtrd 2772 | . . 3 β’ ((π β§ π β π΅) β ((π(-gβπΊ)π)βπ) = ((πβπ) Β· (ββ(πβπ)))) |
47 | 46 | sumeq2dv 15691 | . 2 β’ (π β Ξ£π β π΅ ((π(-gβπΊ)π)βπ) = Ξ£π β π΅ ((πβπ) Β· (ββ(πβπ)))) |
48 | 3, 4, 12 | grpsubeq0 18996 | . . . 4 β’ ((πΊ β Grp β§ π β π· β§ π β π·) β ((π(-gβπΊ)π) = (0gβπΊ) β π = π)) |
49 | 10, 5, 11, 48 | syl3anc 1368 | . . 3 β’ (π β ((π(-gβπΊ)π) = (0gβπΊ) β π = π)) |
50 | 49 | ifbid 4555 | . 2 β’ (π β if((π(-gβπΊ)π) = (0gβπΊ), (Οβπ), 0) = if(π = π, (Οβπ), 0)) |
51 | 16, 47, 50 | 3eqtr3d 2776 | 1 β’ (π β Ξ£π β π΅ ((πβπ) Β· (ββ(πβπ))) = if(π = π, (Οβπ), 0)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3473 ifcif 4532 β ccom 5686 Fn wfn 6548 βΆwf 6549 βcfv 6553 (class class class)co 7426 βf cof 7690 βcc 11146 0cc0 11148 Β· cmul 11153 βcn 12252 βccj 15085 Ξ£csu 15674 Οcphi 16742 Basecbs 17189 +gcplusg 17242 0gc0g 17430 Grpcgrp 18904 invgcminusg 18905 -gcsg 18906 Abelcabl 19750 β€/nβ€czn 21442 DChrcdchr 27193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-inf2 9674 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 ax-addf 11227 ax-mulf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-disj 5118 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-1st 8001 df-2nd 8002 df-supp 8174 df-tpos 8240 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-oadd 8499 df-omul 8500 df-er 8733 df-ec 8735 df-qs 8739 df-map 8855 df-pm 8856 df-ixp 8925 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-fsupp 9396 df-fi 9444 df-sup 9475 df-inf 9476 df-oi 9543 df-card 9972 df-acn 9975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-xnn0 12585 df-z 12599 df-dec 12718 df-uz 12863 df-q 12973 df-rp 13017 df-xneg 13134 df-xadd 13135 df-xmul 13136 df-ioo 13370 df-ioc 13371 df-ico 13372 df-icc 13373 df-fz 13527 df-fzo 13670 df-fl 13799 df-mod 13877 df-seq 14009 df-exp 14069 df-fac 14275 df-bc 14304 df-hash 14332 df-shft 15056 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-limsup 15457 df-clim 15474 df-rlim 15475 df-sum 15675 df-ef 16053 df-sin 16055 df-cos 16056 df-pi 16058 df-dvds 16241 df-gcd 16479 df-phi 16744 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-mulr 17256 df-starv 17257 df-sca 17258 df-vsca 17259 df-ip 17260 df-tset 17261 df-ple 17262 df-ds 17264 df-unif 17265 df-hom 17266 df-cco 17267 df-rest 17413 df-topn 17414 df-0g 17432 df-gsum 17433 df-topgen 17434 df-pt 17435 df-prds 17438 df-xrs 17493 df-qtop 17498 df-imas 17499 df-qus 17500 df-xps 17501 df-mre 17575 df-mrc 17576 df-acs 17578 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-mhm 18749 df-submnd 18750 df-grp 18907 df-minusg 18908 df-sbg 18909 df-mulg 19038 df-subg 19092 df-nsg 19093 df-eqg 19094 df-ghm 19182 df-cntz 19282 df-od 19497 df-cmn 19751 df-abl 19752 df-mgp 20089 df-rng 20107 df-ur 20136 df-ring 20189 df-cring 20190 df-oppr 20287 df-dvdsr 20310 df-unit 20311 df-invr 20341 df-dvr 20354 df-rhm 20425 df-subrng 20497 df-subrg 20522 df-drng 20640 df-lmod 20759 df-lss 20830 df-lsp 20870 df-sra 21072 df-rgmod 21073 df-lidl 21118 df-rsp 21119 df-2idl 21158 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-zring 21387 df-zrh 21443 df-zn 21446 df-top 22824 df-topon 22841 df-topsp 22863 df-bases 22877 df-cld 22951 df-ntr 22952 df-cls 22953 df-nei 23030 df-lp 23068 df-perf 23069 df-cn 23159 df-cnp 23160 df-haus 23247 df-tx 23494 df-hmeo 23687 df-fil 23778 df-fm 23870 df-flim 23871 df-flf 23872 df-xms 24254 df-ms 24255 df-tms 24256 df-cncf 24826 df-limc 25823 df-dv 25824 df-log 26518 df-cxp 26519 df-dchr 27194 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |