MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr2sum Structured version   Visualization version   GIF version

Theorem dchr2sum 27318
Description: An orthogonality relation for Dirichlet characters: the sum of 𝑋(𝑎) · ∗𝑌(𝑎) over all 𝑎 is nonzero only when 𝑋 = 𝑌. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr2sum.g 𝐺 = (DChr‘𝑁)
dchr2sum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr2sum.d 𝐷 = (Base‘𝐺)
dchr2sum.b 𝐵 = (Base‘𝑍)
dchr2sum.x (𝜑𝑋𝐷)
dchr2sum.y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchr2sum (𝜑 → Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
Distinct variable groups:   𝐵,𝑎   𝐺,𝑎   𝜑,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝑁(𝑎)

Proof of Theorem dchr2sum
StepHypRef Expression
1 dchr2sum.g . . 3 𝐺 = (DChr‘𝑁)
2 dchr2sum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchr2sum.d . . 3 𝐷 = (Base‘𝐺)
4 eqid 2736 . . 3 (0g𝐺) = (0g𝐺)
5 dchr2sum.x . . . . . 6 (𝜑𝑋𝐷)
61, 3dchrrcl 27285 . . . . . 6 (𝑋𝐷𝑁 ∈ ℕ)
75, 6syl 17 . . . . 5 (𝜑𝑁 ∈ ℕ)
81dchrabl 27299 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
9 ablgrp 19804 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
107, 8, 93syl 18 . . . 4 (𝜑𝐺 ∈ Grp)
11 dchr2sum.y . . . 4 (𝜑𝑌𝐷)
12 eqid 2736 . . . . 5 (-g𝐺) = (-g𝐺)
133, 12grpsubcl 19039 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐷𝑌𝐷) → (𝑋(-g𝐺)𝑌) ∈ 𝐷)
1410, 5, 11, 13syl3anc 1372 . . 3 (𝜑 → (𝑋(-g𝐺)𝑌) ∈ 𝐷)
15 dchr2sum.b . . 3 𝐵 = (Base‘𝑍)
161, 2, 3, 4, 14, 15dchrsum 27314 . 2 (𝜑 → Σ𝑎𝐵 ((𝑋(-g𝐺)𝑌)‘𝑎) = if((𝑋(-g𝐺)𝑌) = (0g𝐺), (ϕ‘𝑁), 0))
175adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑋𝐷)
1811adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑌𝐷)
19 eqid 2736 . . . . . . . 8 (+g𝐺) = (+g𝐺)
20 eqid 2736 . . . . . . . 8 (invg𝐺) = (invg𝐺)
213, 19, 20, 12grpsubval 19004 . . . . . . 7 ((𝑋𝐷𝑌𝐷) → (𝑋(-g𝐺)𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2217, 18, 21syl2anc 584 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋(-g𝐺)𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
237adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑁 ∈ ℕ)
2423, 8, 93syl 18 . . . . . . . 8 ((𝜑𝑎𝐵) → 𝐺 ∈ Grp)
253, 20grpinvcl 19006 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑌𝐷) → ((invg𝐺)‘𝑌) ∈ 𝐷)
2624, 18, 25syl2anc 584 . . . . . . 7 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐷)
271, 2, 3, 19, 17, 26dchrmul 27293 . . . . . 6 ((𝜑𝑎𝐵) → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = (𝑋f · ((invg𝐺)‘𝑌)))
2822, 27eqtrd 2776 . . . . 5 ((𝜑𝑎𝐵) → (𝑋(-g𝐺)𝑌) = (𝑋f · ((invg𝐺)‘𝑌)))
2928fveq1d 6907 . . . 4 ((𝜑𝑎𝐵) → ((𝑋(-g𝐺)𝑌)‘𝑎) = ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎))
301, 2, 3, 15, 17dchrf 27287 . . . . . 6 ((𝜑𝑎𝐵) → 𝑋:𝐵⟶ℂ)
3130ffnd 6736 . . . . 5 ((𝜑𝑎𝐵) → 𝑋 Fn 𝐵)
321, 2, 3, 15, 26dchrf 27287 . . . . . 6 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌):𝐵⟶ℂ)
3332ffnd 6736 . . . . 5 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) Fn 𝐵)
3415fvexi 6919 . . . . . 6 𝐵 ∈ V
3534a1i 11 . . . . 5 ((𝜑𝑎𝐵) → 𝐵 ∈ V)
36 simpr 484 . . . . 5 ((𝜑𝑎𝐵) → 𝑎𝐵)
37 fnfvof 7715 . . . . 5 (((𝑋 Fn 𝐵 ∧ ((invg𝐺)‘𝑌) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑎𝐵)) → ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎) = ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)))
3831, 33, 35, 36, 37syl22anc 838 . . . 4 ((𝜑𝑎𝐵) → ((𝑋f · ((invg𝐺)‘𝑌))‘𝑎) = ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)))
391, 3, 18, 20dchrinv 27306 . . . . . . 7 ((𝜑𝑎𝐵) → ((invg𝐺)‘𝑌) = (∗ ∘ 𝑌))
4039fveq1d 6907 . . . . . 6 ((𝜑𝑎𝐵) → (((invg𝐺)‘𝑌)‘𝑎) = ((∗ ∘ 𝑌)‘𝑎))
411, 2, 3, 15, 18dchrf 27287 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑌:𝐵⟶ℂ)
42 fvco3 7007 . . . . . . 7 ((𝑌:𝐵⟶ℂ ∧ 𝑎𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4341, 36, 42syl2anc 584 . . . . . 6 ((𝜑𝑎𝐵) → ((∗ ∘ 𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4440, 43eqtrd 2776 . . . . 5 ((𝜑𝑎𝐵) → (((invg𝐺)‘𝑌)‘𝑎) = (∗‘(𝑌𝑎)))
4544oveq2d 7448 . . . 4 ((𝜑𝑎𝐵) → ((𝑋𝑎) · (((invg𝐺)‘𝑌)‘𝑎)) = ((𝑋𝑎) · (∗‘(𝑌𝑎))))
4629, 38, 453eqtrd 2780 . . 3 ((𝜑𝑎𝐵) → ((𝑋(-g𝐺)𝑌)‘𝑎) = ((𝑋𝑎) · (∗‘(𝑌𝑎))))
4746sumeq2dv 15739 . 2 (𝜑 → Σ𝑎𝐵 ((𝑋(-g𝐺)𝑌)‘𝑎) = Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))))
483, 4, 12grpsubeq0 19045 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐷𝑌𝐷) → ((𝑋(-g𝐺)𝑌) = (0g𝐺) ↔ 𝑋 = 𝑌))
4910, 5, 11, 48syl3anc 1372 . . 3 (𝜑 → ((𝑋(-g𝐺)𝑌) = (0g𝐺) ↔ 𝑋 = 𝑌))
5049ifbid 4548 . 2 (𝜑 → if((𝑋(-g𝐺)𝑌) = (0g𝐺), (ϕ‘𝑁), 0) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
5116, 47, 503eqtr3d 2784 1 (𝜑 → Σ𝑎𝐵 ((𝑋𝑎) · (∗‘(𝑌𝑎))) = if(𝑋 = 𝑌, (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  ifcif 4524  ccom 5688   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  cc 11154  0cc0 11156   · cmul 11161  cn 12267  ccj 15136  Σcsu 15723  ϕcphi 16802  Basecbs 17248  +gcplusg 17298  0gc0g 17485  Grpcgrp 18952  invgcminusg 18953  -gcsg 18954  Abelcabl 19800  ℤ/nczn 21514  DChrcdchr 27277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-dvds 16292  df-gcd 16533  df-phi 16804  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-qus 17555  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-nsg 19143  df-eqg 19144  df-ghm 19232  df-cntz 19336  df-od 19547  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-2idl 21261  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-zring 21459  df-zrh 21515  df-zn 21518  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599  df-cxp 26600  df-dchr 27278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator