Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapinvlem4 Structured version   Visualization version   GIF version

Theorem hdmapinvlem4 42040
Description: Part 1.1 of Proposition 1 of [Baer] p. 110. We use 𝐶, 𝐷, 𝐼, and 𝐽 for Baer's u, v, s, and t. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 41955. Our ((𝑆𝐷)‘𝐶) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapinvlem3.h 𝐻 = (LHyp‘𝐾)
hdmapinvlem3.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapinvlem3.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapinvlem3.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapinvlem3.v 𝑉 = (Base‘𝑈)
hdmapinvlem3.p + = (+g𝑈)
hdmapinvlem3.m = (-g𝑈)
hdmapinvlem3.q · = ( ·𝑠𝑈)
hdmapinvlem3.r 𝑅 = (Scalar‘𝑈)
hdmapinvlem3.b 𝐵 = (Base‘𝑅)
hdmapinvlem3.t × = (.r𝑅)
hdmapinvlem3.z 0 = (0g𝑅)
hdmapinvlem3.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapinvlem3.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapinvlem3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapinvlem3.c (𝜑𝐶 ∈ (𝑂‘{𝐸}))
hdmapinvlem3.d (𝜑𝐷 ∈ (𝑂‘{𝐸}))
hdmapinvlem3.i (𝜑𝐼𝐵)
hdmapinvlem3.j (𝜑𝐽𝐵)
hdmapinvlem3.ij (𝜑 → (𝐼 × (𝐺𝐽)) = ((𝑆𝐷)‘𝐶))
Assertion
Ref Expression
hdmapinvlem4 (𝜑 → (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷))

Proof of Theorem hdmapinvlem4
StepHypRef Expression
1 hdmapinvlem3.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmapinvlem3.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapinvlem3.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmapinvlem3.m . . . 4 = (-g𝑈)
5 hdmapinvlem3.r . . . 4 𝑅 = (Scalar‘𝑈)
6 eqid 2733 . . . 4 (-g𝑅) = (-g𝑅)
7 hdmapinvlem3.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
8 hdmapinvlem3.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 8dvhlmod 41229 . . . . 5 (𝜑𝑈 ∈ LMod)
10 hdmapinvlem3.j . . . . 5 (𝜑𝐽𝐵)
11 eqid 2733 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2733 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
13 eqid 2733 . . . . . . 7 (0g𝑈) = (0g𝑈)
14 hdmapinvlem3.e . . . . . . 7 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
151, 11, 12, 2, 3, 13, 14, 8dvheveccl 41231 . . . . . 6 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
1615eldifad 3910 . . . . 5 (𝜑𝐸𝑉)
17 hdmapinvlem3.q . . . . . 6 · = ( ·𝑠𝑈)
18 hdmapinvlem3.b . . . . . 6 𝐵 = (Base‘𝑅)
193, 5, 17, 18lmodvscl 20813 . . . . 5 ((𝑈 ∈ LMod ∧ 𝐽𝐵𝐸𝑉) → (𝐽 · 𝐸) ∈ 𝑉)
209, 10, 16, 19syl3anc 1373 . . . 4 (𝜑 → (𝐽 · 𝐸) ∈ 𝑉)
2116snssd 4760 . . . . . 6 (𝜑 → {𝐸} ⊆ 𝑉)
22 hdmapinvlem3.o . . . . . . 7 𝑂 = ((ocH‘𝐾)‘𝑊)
231, 2, 3, 22dochssv 41474 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
248, 21, 23syl2anc 584 . . . . 5 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
25 hdmapinvlem3.d . . . . 5 (𝜑𝐷 ∈ (𝑂‘{𝐸}))
2624, 25sseldd 3931 . . . 4 (𝜑𝐷𝑉)
27 hdmapinvlem3.i . . . . . 6 (𝜑𝐼𝐵)
283, 5, 17, 18lmodvscl 20813 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝐼𝐵𝐸𝑉) → (𝐼 · 𝐸) ∈ 𝑉)
299, 27, 16, 28syl3anc 1373 . . . . 5 (𝜑 → (𝐼 · 𝐸) ∈ 𝑉)
30 hdmapinvlem3.c . . . . . 6 (𝜑𝐶 ∈ (𝑂‘{𝐸}))
3124, 30sseldd 3931 . . . . 5 (𝜑𝐶𝑉)
32 hdmapinvlem3.p . . . . . 6 + = (+g𝑈)
333, 32lmodvacl 20810 . . . . 5 ((𝑈 ∈ LMod ∧ (𝐼 · 𝐸) ∈ 𝑉𝐶𝑉) → ((𝐼 · 𝐸) + 𝐶) ∈ 𝑉)
349, 29, 31, 33syl3anc 1373 . . . 4 (𝜑 → ((𝐼 · 𝐸) + 𝐶) ∈ 𝑉)
351, 2, 3, 4, 5, 6, 7, 8, 20, 26, 34hdmaplns1 42027 . . 3 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = (((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸))(-g𝑅)((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷)))
36 hdmapinvlem3.t . . . . 5 × = (.r𝑅)
37 hdmapinvlem3.z . . . . 5 0 = (0g𝑅)
38 hdmapinvlem3.g . . . . 5 𝐺 = ((HGMap‘𝐾)‘𝑊)
39 hdmapinvlem3.ij . . . . 5 (𝜑 → (𝐼 × (𝐺𝐽)) = ((𝑆𝐷)‘𝐶))
401, 14, 22, 2, 3, 32, 4, 17, 5, 18, 36, 37, 7, 38, 8, 30, 25, 27, 10, 39hdmapinvlem3 42039 . . . 4 (𝜑 → ((𝑆‘((𝐽 · 𝐸) 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 )
413, 4lmodvsubcl 20842 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝐽 · 𝐸) ∈ 𝑉𝐷𝑉) → ((𝐽 · 𝐸) 𝐷) ∈ 𝑉)
429, 20, 26, 41syl3anc 1373 . . . . 5 (𝜑 → ((𝐽 · 𝐸) 𝐷) ∈ 𝑉)
431, 2, 3, 5, 37, 7, 8, 42, 34hdmapip0com 42036 . . . 4 (𝜑 → (((𝑆‘((𝐽 · 𝐸) 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 ↔ ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = 0 ))
4440, 43mpbid 232 . . 3 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = 0 )
451, 2, 3, 17, 5, 18, 36, 7, 8, 16, 34, 10hdmaplnm1 42028 . . . . 5 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸)) = (𝐽 × ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸)))
46 eqid 2733 . . . . . . . 8 (+g𝑅) = (+g𝑅)
471, 2, 3, 32, 5, 46, 7, 8, 16, 29, 31hdmaplna2 42029 . . . . . . 7 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸) = (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅)((𝑆𝐶)‘𝐸)))
481, 14, 22, 2, 3, 5, 18, 36, 37, 7, 8, 30hdmapinvlem2 42038 . . . . . . . 8 (𝜑 → ((𝑆𝐶)‘𝐸) = 0 )
4948oveq2d 7368 . . . . . . 7 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅)((𝑆𝐶)‘𝐸)) = (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ))
505lmodring 20803 . . . . . . . . . . 11 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
519, 50syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
52 ringgrp 20158 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5351, 52syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
541, 2, 3, 5, 18, 7, 8, 16, 29hdmapipcl 42024 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐸) ∈ 𝐵)
5518, 46, 37grprid 18883 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ ((𝑆‘(𝐼 · 𝐸))‘𝐸) ∈ 𝐵) → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = ((𝑆‘(𝐼 · 𝐸))‘𝐸))
5653, 54, 55syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = ((𝑆‘(𝐼 · 𝐸))‘𝐸))
571, 2, 3, 17, 5, 18, 36, 7, 38, 8, 16, 16, 27hdmapglnm2 42030 . . . . . . . 8 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐸) = (((𝑆𝐸)‘𝐸) × (𝐺𝐼)))
58 eqid 2733 . . . . . . . . . . 11 ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊)
59 eqid 2733 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
601, 14, 58, 7, 8, 2, 5, 59hdmapevec2 41955 . . . . . . . . . 10 (𝜑 → ((𝑆𝐸)‘𝐸) = (1r𝑅))
6160oveq1d 7367 . . . . . . . . 9 (𝜑 → (((𝑆𝐸)‘𝐸) × (𝐺𝐼)) = ((1r𝑅) × (𝐺𝐼)))
621, 2, 5, 18, 38, 8, 27hgmapcl 42008 . . . . . . . . . 10 (𝜑 → (𝐺𝐼) ∈ 𝐵)
6318, 36, 59ringlidm 20189 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ 𝐵) → ((1r𝑅) × (𝐺𝐼)) = (𝐺𝐼))
6451, 62, 63syl2anc 584 . . . . . . . . 9 (𝜑 → ((1r𝑅) × (𝐺𝐼)) = (𝐺𝐼))
6561, 64eqtrd 2768 . . . . . . . 8 (𝜑 → (((𝑆𝐸)‘𝐸) × (𝐺𝐼)) = (𝐺𝐼))
6656, 57, 653eqtrd 2772 . . . . . . 7 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = (𝐺𝐼))
6747, 49, 663eqtrd 2772 . . . . . 6 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸) = (𝐺𝐼))
6867oveq2d 7368 . . . . 5 (𝜑 → (𝐽 × ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸)) = (𝐽 × (𝐺𝐼)))
6945, 68eqtrd 2768 . . . 4 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸)) = (𝐽 × (𝐺𝐼)))
701, 2, 3, 32, 5, 46, 7, 8, 26, 29, 31hdmaplna2 42029 . . . . 5 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷) = (((𝑆‘(𝐼 · 𝐸))‘𝐷)(+g𝑅)((𝑆𝐶)‘𝐷)))
711, 2, 3, 17, 5, 18, 36, 7, 38, 8, 26, 16, 27hdmapglnm2 42030 . . . . . . 7 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐷) = (((𝑆𝐸)‘𝐷) × (𝐺𝐼)))
721, 14, 22, 2, 3, 5, 18, 36, 37, 7, 8, 25hdmapinvlem1 42037 . . . . . . . 8 (𝜑 → ((𝑆𝐸)‘𝐷) = 0 )
7372oveq1d 7367 . . . . . . 7 (𝜑 → (((𝑆𝐸)‘𝐷) × (𝐺𝐼)) = ( 0 × (𝐺𝐼)))
7418, 36, 37ringlz 20213 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ 𝐵) → ( 0 × (𝐺𝐼)) = 0 )
7551, 62, 74syl2anc 584 . . . . . . 7 (𝜑 → ( 0 × (𝐺𝐼)) = 0 )
7671, 73, 753eqtrd 2772 . . . . . 6 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐷) = 0 )
7776oveq1d 7367 . . . . 5 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐷)(+g𝑅)((𝑆𝐶)‘𝐷)) = ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)))
781, 2, 3, 5, 18, 7, 8, 26, 31hdmapipcl 42024 . . . . . 6 (𝜑 → ((𝑆𝐶)‘𝐷) ∈ 𝐵)
7918, 46, 37grplid 18882 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑆𝐶)‘𝐷) ∈ 𝐵) → ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)) = ((𝑆𝐶)‘𝐷))
8053, 78, 79syl2anc 584 . . . . 5 (𝜑 → ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)) = ((𝑆𝐶)‘𝐷))
8170, 77, 803eqtrd 2772 . . . 4 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷) = ((𝑆𝐶)‘𝐷))
8269, 81oveq12d 7370 . . 3 (𝜑 → (((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸))(-g𝑅)((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷)) = ((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)))
8335, 44, 823eqtr3rd 2777 . 2 (𝜑 → ((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 )
845, 18, 36lmodmcl 20808 . . . 4 ((𝑈 ∈ LMod ∧ 𝐽𝐵 ∧ (𝐺𝐼) ∈ 𝐵) → (𝐽 × (𝐺𝐼)) ∈ 𝐵)
859, 10, 62, 84syl3anc 1373 . . 3 (𝜑 → (𝐽 × (𝐺𝐼)) ∈ 𝐵)
8618, 37, 6grpsubeq0 18941 . . 3 ((𝑅 ∈ Grp ∧ (𝐽 × (𝐺𝐼)) ∈ 𝐵 ∧ ((𝑆𝐶)‘𝐷) ∈ 𝐵) → (((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 ↔ (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷)))
8753, 85, 78, 86syl3anc 1373 . 2 (𝜑 → (((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 ↔ (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷)))
8883, 87mpbid 232 1 (𝜑 → (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898  {csn 4575  cop 4581   I cid 5513  cres 5621  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345  Grpcgrp 18848  -gcsg 18850  1rcur 20101  Ringcrg 20153  LModclmod 20795  HLchlt 39469  LHypclh 40103  LTrncltrn 40220  DVecHcdvh 41197  ocHcoch 41466  HVMapchvm 41875  HDMapchdma 41911  HGMapchg 42002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-riotaBAD 39072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-undef 8209  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-0g 17347  df-mre 17490  df-mrc 17491  df-acs 17493  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-oppg 19260  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-nzr 20430  df-rlreg 20611  df-domn 20612  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039  df-lsatoms 39095  df-lshyp 39096  df-lcv 39138  df-lfl 39177  df-lkr 39205  df-ldual 39243  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-llines 39617  df-lplanes 39618  df-lvols 39619  df-lines 39620  df-psubsp 39622  df-pmap 39623  df-padd 39915  df-lhyp 40107  df-laut 40108  df-ldil 40223  df-ltrn 40224  df-trl 40278  df-tgrp 40862  df-tendo 40874  df-edring 40876  df-dveca 41122  df-disoa 41148  df-dvech 41198  df-dib 41258  df-dic 41292  df-dih 41348  df-doch 41467  df-djh 41514  df-lcdual 41706  df-mapd 41744  df-hvmap 41876  df-hdmap1 41912  df-hdmap 41913  df-hgmap 42003
This theorem is referenced by:  hdmapglem5  42041  hgmapvvlem1  42042
  Copyright terms: Public domain W3C validator