Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapinvlem4 Structured version   Visualization version   GIF version

Theorem hdmapinvlem4 41900
Description: Part 1.1 of Proposition 1 of [Baer] p. 110. We use 𝐶, 𝐷, 𝐼, and 𝐽 for Baer's u, v, s, and t. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 41815. Our ((𝑆𝐷)‘𝐶) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapinvlem3.h 𝐻 = (LHyp‘𝐾)
hdmapinvlem3.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapinvlem3.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapinvlem3.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapinvlem3.v 𝑉 = (Base‘𝑈)
hdmapinvlem3.p + = (+g𝑈)
hdmapinvlem3.m = (-g𝑈)
hdmapinvlem3.q · = ( ·𝑠𝑈)
hdmapinvlem3.r 𝑅 = (Scalar‘𝑈)
hdmapinvlem3.b 𝐵 = (Base‘𝑅)
hdmapinvlem3.t × = (.r𝑅)
hdmapinvlem3.z 0 = (0g𝑅)
hdmapinvlem3.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapinvlem3.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapinvlem3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapinvlem3.c (𝜑𝐶 ∈ (𝑂‘{𝐸}))
hdmapinvlem3.d (𝜑𝐷 ∈ (𝑂‘{𝐸}))
hdmapinvlem3.i (𝜑𝐼𝐵)
hdmapinvlem3.j (𝜑𝐽𝐵)
hdmapinvlem3.ij (𝜑 → (𝐼 × (𝐺𝐽)) = ((𝑆𝐷)‘𝐶))
Assertion
Ref Expression
hdmapinvlem4 (𝜑 → (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷))

Proof of Theorem hdmapinvlem4
StepHypRef Expression
1 hdmapinvlem3.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmapinvlem3.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapinvlem3.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmapinvlem3.m . . . 4 = (-g𝑈)
5 hdmapinvlem3.r . . . 4 𝑅 = (Scalar‘𝑈)
6 eqid 2729 . . . 4 (-g𝑅) = (-g𝑅)
7 hdmapinvlem3.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
8 hdmapinvlem3.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 8dvhlmod 41089 . . . . 5 (𝜑𝑈 ∈ LMod)
10 hdmapinvlem3.j . . . . 5 (𝜑𝐽𝐵)
11 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2729 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
13 eqid 2729 . . . . . . 7 (0g𝑈) = (0g𝑈)
14 hdmapinvlem3.e . . . . . . 7 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
151, 11, 12, 2, 3, 13, 14, 8dvheveccl 41091 . . . . . 6 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
1615eldifad 3917 . . . . 5 (𝜑𝐸𝑉)
17 hdmapinvlem3.q . . . . . 6 · = ( ·𝑠𝑈)
18 hdmapinvlem3.b . . . . . 6 𝐵 = (Base‘𝑅)
193, 5, 17, 18lmodvscl 20799 . . . . 5 ((𝑈 ∈ LMod ∧ 𝐽𝐵𝐸𝑉) → (𝐽 · 𝐸) ∈ 𝑉)
209, 10, 16, 19syl3anc 1373 . . . 4 (𝜑 → (𝐽 · 𝐸) ∈ 𝑉)
2116snssd 4763 . . . . . 6 (𝜑 → {𝐸} ⊆ 𝑉)
22 hdmapinvlem3.o . . . . . . 7 𝑂 = ((ocH‘𝐾)‘𝑊)
231, 2, 3, 22dochssv 41334 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
248, 21, 23syl2anc 584 . . . . 5 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
25 hdmapinvlem3.d . . . . 5 (𝜑𝐷 ∈ (𝑂‘{𝐸}))
2624, 25sseldd 3938 . . . 4 (𝜑𝐷𝑉)
27 hdmapinvlem3.i . . . . . 6 (𝜑𝐼𝐵)
283, 5, 17, 18lmodvscl 20799 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝐼𝐵𝐸𝑉) → (𝐼 · 𝐸) ∈ 𝑉)
299, 27, 16, 28syl3anc 1373 . . . . 5 (𝜑 → (𝐼 · 𝐸) ∈ 𝑉)
30 hdmapinvlem3.c . . . . . 6 (𝜑𝐶 ∈ (𝑂‘{𝐸}))
3124, 30sseldd 3938 . . . . 5 (𝜑𝐶𝑉)
32 hdmapinvlem3.p . . . . . 6 + = (+g𝑈)
333, 32lmodvacl 20796 . . . . 5 ((𝑈 ∈ LMod ∧ (𝐼 · 𝐸) ∈ 𝑉𝐶𝑉) → ((𝐼 · 𝐸) + 𝐶) ∈ 𝑉)
349, 29, 31, 33syl3anc 1373 . . . 4 (𝜑 → ((𝐼 · 𝐸) + 𝐶) ∈ 𝑉)
351, 2, 3, 4, 5, 6, 7, 8, 20, 26, 34hdmaplns1 41887 . . 3 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = (((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸))(-g𝑅)((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷)))
36 hdmapinvlem3.t . . . . 5 × = (.r𝑅)
37 hdmapinvlem3.z . . . . 5 0 = (0g𝑅)
38 hdmapinvlem3.g . . . . 5 𝐺 = ((HGMap‘𝐾)‘𝑊)
39 hdmapinvlem3.ij . . . . 5 (𝜑 → (𝐼 × (𝐺𝐽)) = ((𝑆𝐷)‘𝐶))
401, 14, 22, 2, 3, 32, 4, 17, 5, 18, 36, 37, 7, 38, 8, 30, 25, 27, 10, 39hdmapinvlem3 41899 . . . 4 (𝜑 → ((𝑆‘((𝐽 · 𝐸) 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 )
413, 4lmodvsubcl 20828 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝐽 · 𝐸) ∈ 𝑉𝐷𝑉) → ((𝐽 · 𝐸) 𝐷) ∈ 𝑉)
429, 20, 26, 41syl3anc 1373 . . . . 5 (𝜑 → ((𝐽 · 𝐸) 𝐷) ∈ 𝑉)
431, 2, 3, 5, 37, 7, 8, 42, 34hdmapip0com 41896 . . . 4 (𝜑 → (((𝑆‘((𝐽 · 𝐸) 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 ↔ ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = 0 ))
4440, 43mpbid 232 . . 3 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = 0 )
451, 2, 3, 17, 5, 18, 36, 7, 8, 16, 34, 10hdmaplnm1 41888 . . . . 5 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸)) = (𝐽 × ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸)))
46 eqid 2729 . . . . . . . 8 (+g𝑅) = (+g𝑅)
471, 2, 3, 32, 5, 46, 7, 8, 16, 29, 31hdmaplna2 41889 . . . . . . 7 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸) = (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅)((𝑆𝐶)‘𝐸)))
481, 14, 22, 2, 3, 5, 18, 36, 37, 7, 8, 30hdmapinvlem2 41898 . . . . . . . 8 (𝜑 → ((𝑆𝐶)‘𝐸) = 0 )
4948oveq2d 7369 . . . . . . 7 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅)((𝑆𝐶)‘𝐸)) = (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ))
505lmodring 20789 . . . . . . . . . . 11 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
519, 50syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
52 ringgrp 20141 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5351, 52syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
541, 2, 3, 5, 18, 7, 8, 16, 29hdmapipcl 41884 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐸) ∈ 𝐵)
5518, 46, 37grprid 18865 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ ((𝑆‘(𝐼 · 𝐸))‘𝐸) ∈ 𝐵) → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = ((𝑆‘(𝐼 · 𝐸))‘𝐸))
5653, 54, 55syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = ((𝑆‘(𝐼 · 𝐸))‘𝐸))
571, 2, 3, 17, 5, 18, 36, 7, 38, 8, 16, 16, 27hdmapglnm2 41890 . . . . . . . 8 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐸) = (((𝑆𝐸)‘𝐸) × (𝐺𝐼)))
58 eqid 2729 . . . . . . . . . . 11 ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊)
59 eqid 2729 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
601, 14, 58, 7, 8, 2, 5, 59hdmapevec2 41815 . . . . . . . . . 10 (𝜑 → ((𝑆𝐸)‘𝐸) = (1r𝑅))
6160oveq1d 7368 . . . . . . . . 9 (𝜑 → (((𝑆𝐸)‘𝐸) × (𝐺𝐼)) = ((1r𝑅) × (𝐺𝐼)))
621, 2, 5, 18, 38, 8, 27hgmapcl 41868 . . . . . . . . . 10 (𝜑 → (𝐺𝐼) ∈ 𝐵)
6318, 36, 59ringlidm 20172 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ 𝐵) → ((1r𝑅) × (𝐺𝐼)) = (𝐺𝐼))
6451, 62, 63syl2anc 584 . . . . . . . . 9 (𝜑 → ((1r𝑅) × (𝐺𝐼)) = (𝐺𝐼))
6561, 64eqtrd 2764 . . . . . . . 8 (𝜑 → (((𝑆𝐸)‘𝐸) × (𝐺𝐼)) = (𝐺𝐼))
6656, 57, 653eqtrd 2768 . . . . . . 7 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = (𝐺𝐼))
6747, 49, 663eqtrd 2768 . . . . . 6 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸) = (𝐺𝐼))
6867oveq2d 7369 . . . . 5 (𝜑 → (𝐽 × ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸)) = (𝐽 × (𝐺𝐼)))
6945, 68eqtrd 2764 . . . 4 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸)) = (𝐽 × (𝐺𝐼)))
701, 2, 3, 32, 5, 46, 7, 8, 26, 29, 31hdmaplna2 41889 . . . . 5 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷) = (((𝑆‘(𝐼 · 𝐸))‘𝐷)(+g𝑅)((𝑆𝐶)‘𝐷)))
711, 2, 3, 17, 5, 18, 36, 7, 38, 8, 26, 16, 27hdmapglnm2 41890 . . . . . . 7 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐷) = (((𝑆𝐸)‘𝐷) × (𝐺𝐼)))
721, 14, 22, 2, 3, 5, 18, 36, 37, 7, 8, 25hdmapinvlem1 41897 . . . . . . . 8 (𝜑 → ((𝑆𝐸)‘𝐷) = 0 )
7372oveq1d 7368 . . . . . . 7 (𝜑 → (((𝑆𝐸)‘𝐷) × (𝐺𝐼)) = ( 0 × (𝐺𝐼)))
7418, 36, 37ringlz 20196 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ 𝐵) → ( 0 × (𝐺𝐼)) = 0 )
7551, 62, 74syl2anc 584 . . . . . . 7 (𝜑 → ( 0 × (𝐺𝐼)) = 0 )
7671, 73, 753eqtrd 2768 . . . . . 6 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐷) = 0 )
7776oveq1d 7368 . . . . 5 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐷)(+g𝑅)((𝑆𝐶)‘𝐷)) = ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)))
781, 2, 3, 5, 18, 7, 8, 26, 31hdmapipcl 41884 . . . . . 6 (𝜑 → ((𝑆𝐶)‘𝐷) ∈ 𝐵)
7918, 46, 37grplid 18864 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑆𝐶)‘𝐷) ∈ 𝐵) → ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)) = ((𝑆𝐶)‘𝐷))
8053, 78, 79syl2anc 584 . . . . 5 (𝜑 → ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)) = ((𝑆𝐶)‘𝐷))
8170, 77, 803eqtrd 2768 . . . 4 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷) = ((𝑆𝐶)‘𝐷))
8269, 81oveq12d 7371 . . 3 (𝜑 → (((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸))(-g𝑅)((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷)) = ((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)))
8335, 44, 823eqtr3rd 2773 . 2 (𝜑 → ((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 )
845, 18, 36lmodmcl 20794 . . . 4 ((𝑈 ∈ LMod ∧ 𝐽𝐵 ∧ (𝐺𝐼) ∈ 𝐵) → (𝐽 × (𝐺𝐼)) ∈ 𝐵)
859, 10, 62, 84syl3anc 1373 . . 3 (𝜑 → (𝐽 × (𝐺𝐼)) ∈ 𝐵)
8618, 37, 6grpsubeq0 18923 . . 3 ((𝑅 ∈ Grp ∧ (𝐽 × (𝐺𝐼)) ∈ 𝐵 ∧ ((𝑆𝐶)‘𝐷) ∈ 𝐵) → (((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 ↔ (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷)))
8753, 85, 78, 86syl3anc 1373 . 2 (𝜑 → (((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 ↔ (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷)))
8883, 87mpbid 232 1 (𝜑 → (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3905  {csn 4579  cop 4585   I cid 5517  cres 5625  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  Grpcgrp 18830  -gcsg 18832  1rcur 20084  Ringcrg 20136  LModclmod 20781  HLchlt 39328  LHypclh 39963  LTrncltrn 40080  DVecHcdvh 41057  ocHcoch 41326  HVMapchvm 41735  HDMapchdma 41771  HGMapchg 41862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38954  df-lshyp 38955  df-lcv 38997  df-lfl 39036  df-lkr 39064  df-ldual 39102  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374  df-lcdual 41566  df-mapd 41604  df-hvmap 41736  df-hdmap1 41772  df-hdmap 41773  df-hgmap 41863
This theorem is referenced by:  hdmapglem5  41901  hgmapvvlem1  41902
  Copyright terms: Public domain W3C validator