Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapinvlem4 Structured version   Visualization version   GIF version

Theorem hdmapinvlem4 41394
Description: Part 1.1 of Proposition 1 of [Baer] p. 110. We use 𝐶, 𝐷, 𝐼, and 𝐽 for Baer's u, v, s, and t. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 41309. Our ((𝑆𝐷)‘𝐶) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapinvlem3.h 𝐻 = (LHyp‘𝐾)
hdmapinvlem3.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapinvlem3.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapinvlem3.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapinvlem3.v 𝑉 = (Base‘𝑈)
hdmapinvlem3.p + = (+g𝑈)
hdmapinvlem3.m = (-g𝑈)
hdmapinvlem3.q · = ( ·𝑠𝑈)
hdmapinvlem3.r 𝑅 = (Scalar‘𝑈)
hdmapinvlem3.b 𝐵 = (Base‘𝑅)
hdmapinvlem3.t × = (.r𝑅)
hdmapinvlem3.z 0 = (0g𝑅)
hdmapinvlem3.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapinvlem3.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapinvlem3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapinvlem3.c (𝜑𝐶 ∈ (𝑂‘{𝐸}))
hdmapinvlem3.d (𝜑𝐷 ∈ (𝑂‘{𝐸}))
hdmapinvlem3.i (𝜑𝐼𝐵)
hdmapinvlem3.j (𝜑𝐽𝐵)
hdmapinvlem3.ij (𝜑 → (𝐼 × (𝐺𝐽)) = ((𝑆𝐷)‘𝐶))
Assertion
Ref Expression
hdmapinvlem4 (𝜑 → (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷))

Proof of Theorem hdmapinvlem4
StepHypRef Expression
1 hdmapinvlem3.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmapinvlem3.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapinvlem3.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmapinvlem3.m . . . 4 = (-g𝑈)
5 hdmapinvlem3.r . . . 4 𝑅 = (Scalar‘𝑈)
6 eqid 2728 . . . 4 (-g𝑅) = (-g𝑅)
7 hdmapinvlem3.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
8 hdmapinvlem3.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 8dvhlmod 40583 . . . . 5 (𝜑𝑈 ∈ LMod)
10 hdmapinvlem3.j . . . . 5 (𝜑𝐽𝐵)
11 eqid 2728 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2728 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
13 eqid 2728 . . . . . . 7 (0g𝑈) = (0g𝑈)
14 hdmapinvlem3.e . . . . . . 7 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
151, 11, 12, 2, 3, 13, 14, 8dvheveccl 40585 . . . . . 6 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
1615eldifad 3959 . . . . 5 (𝜑𝐸𝑉)
17 hdmapinvlem3.q . . . . . 6 · = ( ·𝑠𝑈)
18 hdmapinvlem3.b . . . . . 6 𝐵 = (Base‘𝑅)
193, 5, 17, 18lmodvscl 20760 . . . . 5 ((𝑈 ∈ LMod ∧ 𝐽𝐵𝐸𝑉) → (𝐽 · 𝐸) ∈ 𝑉)
209, 10, 16, 19syl3anc 1369 . . . 4 (𝜑 → (𝐽 · 𝐸) ∈ 𝑉)
2116snssd 4813 . . . . . 6 (𝜑 → {𝐸} ⊆ 𝑉)
22 hdmapinvlem3.o . . . . . . 7 𝑂 = ((ocH‘𝐾)‘𝑊)
231, 2, 3, 22dochssv 40828 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
248, 21, 23syl2anc 583 . . . . 5 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
25 hdmapinvlem3.d . . . . 5 (𝜑𝐷 ∈ (𝑂‘{𝐸}))
2624, 25sseldd 3981 . . . 4 (𝜑𝐷𝑉)
27 hdmapinvlem3.i . . . . . 6 (𝜑𝐼𝐵)
283, 5, 17, 18lmodvscl 20760 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝐼𝐵𝐸𝑉) → (𝐼 · 𝐸) ∈ 𝑉)
299, 27, 16, 28syl3anc 1369 . . . . 5 (𝜑 → (𝐼 · 𝐸) ∈ 𝑉)
30 hdmapinvlem3.c . . . . . 6 (𝜑𝐶 ∈ (𝑂‘{𝐸}))
3124, 30sseldd 3981 . . . . 5 (𝜑𝐶𝑉)
32 hdmapinvlem3.p . . . . . 6 + = (+g𝑈)
333, 32lmodvacl 20757 . . . . 5 ((𝑈 ∈ LMod ∧ (𝐼 · 𝐸) ∈ 𝑉𝐶𝑉) → ((𝐼 · 𝐸) + 𝐶) ∈ 𝑉)
349, 29, 31, 33syl3anc 1369 . . . 4 (𝜑 → ((𝐼 · 𝐸) + 𝐶) ∈ 𝑉)
351, 2, 3, 4, 5, 6, 7, 8, 20, 26, 34hdmaplns1 41381 . . 3 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = (((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸))(-g𝑅)((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷)))
36 hdmapinvlem3.t . . . . 5 × = (.r𝑅)
37 hdmapinvlem3.z . . . . 5 0 = (0g𝑅)
38 hdmapinvlem3.g . . . . 5 𝐺 = ((HGMap‘𝐾)‘𝑊)
39 hdmapinvlem3.ij . . . . 5 (𝜑 → (𝐼 × (𝐺𝐽)) = ((𝑆𝐷)‘𝐶))
401, 14, 22, 2, 3, 32, 4, 17, 5, 18, 36, 37, 7, 38, 8, 30, 25, 27, 10, 39hdmapinvlem3 41393 . . . 4 (𝜑 → ((𝑆‘((𝐽 · 𝐸) 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 )
413, 4lmodvsubcl 20789 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝐽 · 𝐸) ∈ 𝑉𝐷𝑉) → ((𝐽 · 𝐸) 𝐷) ∈ 𝑉)
429, 20, 26, 41syl3anc 1369 . . . . 5 (𝜑 → ((𝐽 · 𝐸) 𝐷) ∈ 𝑉)
431, 2, 3, 5, 37, 7, 8, 42, 34hdmapip0com 41390 . . . 4 (𝜑 → (((𝑆‘((𝐽 · 𝐸) 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 ↔ ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = 0 ))
4440, 43mpbid 231 . . 3 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = 0 )
451, 2, 3, 17, 5, 18, 36, 7, 8, 16, 34, 10hdmaplnm1 41382 . . . . 5 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸)) = (𝐽 × ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸)))
46 eqid 2728 . . . . . . . 8 (+g𝑅) = (+g𝑅)
471, 2, 3, 32, 5, 46, 7, 8, 16, 29, 31hdmaplna2 41383 . . . . . . 7 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸) = (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅)((𝑆𝐶)‘𝐸)))
481, 14, 22, 2, 3, 5, 18, 36, 37, 7, 8, 30hdmapinvlem2 41392 . . . . . . . 8 (𝜑 → ((𝑆𝐶)‘𝐸) = 0 )
4948oveq2d 7436 . . . . . . 7 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅)((𝑆𝐶)‘𝐸)) = (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ))
505lmodring 20750 . . . . . . . . . . 11 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
519, 50syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
52 ringgrp 20177 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5351, 52syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
541, 2, 3, 5, 18, 7, 8, 16, 29hdmapipcl 41378 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐸) ∈ 𝐵)
5518, 46, 37grprid 18924 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ ((𝑆‘(𝐼 · 𝐸))‘𝐸) ∈ 𝐵) → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = ((𝑆‘(𝐼 · 𝐸))‘𝐸))
5653, 54, 55syl2anc 583 . . . . . . . 8 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = ((𝑆‘(𝐼 · 𝐸))‘𝐸))
571, 2, 3, 17, 5, 18, 36, 7, 38, 8, 16, 16, 27hdmapglnm2 41384 . . . . . . . 8 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐸) = (((𝑆𝐸)‘𝐸) × (𝐺𝐼)))
58 eqid 2728 . . . . . . . . . . 11 ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊)
59 eqid 2728 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
601, 14, 58, 7, 8, 2, 5, 59hdmapevec2 41309 . . . . . . . . . 10 (𝜑 → ((𝑆𝐸)‘𝐸) = (1r𝑅))
6160oveq1d 7435 . . . . . . . . 9 (𝜑 → (((𝑆𝐸)‘𝐸) × (𝐺𝐼)) = ((1r𝑅) × (𝐺𝐼)))
621, 2, 5, 18, 38, 8, 27hgmapcl 41362 . . . . . . . . . 10 (𝜑 → (𝐺𝐼) ∈ 𝐵)
6318, 36, 59ringlidm 20204 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ 𝐵) → ((1r𝑅) × (𝐺𝐼)) = (𝐺𝐼))
6451, 62, 63syl2anc 583 . . . . . . . . 9 (𝜑 → ((1r𝑅) × (𝐺𝐼)) = (𝐺𝐼))
6561, 64eqtrd 2768 . . . . . . . 8 (𝜑 → (((𝑆𝐸)‘𝐸) × (𝐺𝐼)) = (𝐺𝐼))
6656, 57, 653eqtrd 2772 . . . . . . 7 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = (𝐺𝐼))
6747, 49, 663eqtrd 2772 . . . . . 6 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸) = (𝐺𝐼))
6867oveq2d 7436 . . . . 5 (𝜑 → (𝐽 × ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸)) = (𝐽 × (𝐺𝐼)))
6945, 68eqtrd 2768 . . . 4 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸)) = (𝐽 × (𝐺𝐼)))
701, 2, 3, 32, 5, 46, 7, 8, 26, 29, 31hdmaplna2 41383 . . . . 5 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷) = (((𝑆‘(𝐼 · 𝐸))‘𝐷)(+g𝑅)((𝑆𝐶)‘𝐷)))
711, 2, 3, 17, 5, 18, 36, 7, 38, 8, 26, 16, 27hdmapglnm2 41384 . . . . . . 7 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐷) = (((𝑆𝐸)‘𝐷) × (𝐺𝐼)))
721, 14, 22, 2, 3, 5, 18, 36, 37, 7, 8, 25hdmapinvlem1 41391 . . . . . . . 8 (𝜑 → ((𝑆𝐸)‘𝐷) = 0 )
7372oveq1d 7435 . . . . . . 7 (𝜑 → (((𝑆𝐸)‘𝐷) × (𝐺𝐼)) = ( 0 × (𝐺𝐼)))
7418, 36, 37ringlz 20228 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ 𝐵) → ( 0 × (𝐺𝐼)) = 0 )
7551, 62, 74syl2anc 583 . . . . . . 7 (𝜑 → ( 0 × (𝐺𝐼)) = 0 )
7671, 73, 753eqtrd 2772 . . . . . 6 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐷) = 0 )
7776oveq1d 7435 . . . . 5 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐷)(+g𝑅)((𝑆𝐶)‘𝐷)) = ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)))
781, 2, 3, 5, 18, 7, 8, 26, 31hdmapipcl 41378 . . . . . 6 (𝜑 → ((𝑆𝐶)‘𝐷) ∈ 𝐵)
7918, 46, 37grplid 18923 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑆𝐶)‘𝐷) ∈ 𝐵) → ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)) = ((𝑆𝐶)‘𝐷))
8053, 78, 79syl2anc 583 . . . . 5 (𝜑 → ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)) = ((𝑆𝐶)‘𝐷))
8170, 77, 803eqtrd 2772 . . . 4 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷) = ((𝑆𝐶)‘𝐷))
8269, 81oveq12d 7438 . . 3 (𝜑 → (((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸))(-g𝑅)((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷)) = ((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)))
8335, 44, 823eqtr3rd 2777 . 2 (𝜑 → ((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 )
845, 18, 36lmodmcl 20755 . . . 4 ((𝑈 ∈ LMod ∧ 𝐽𝐵 ∧ (𝐺𝐼) ∈ 𝐵) → (𝐽 × (𝐺𝐼)) ∈ 𝐵)
859, 10, 62, 84syl3anc 1369 . . 3 (𝜑 → (𝐽 × (𝐺𝐼)) ∈ 𝐵)
8618, 37, 6grpsubeq0 18981 . . 3 ((𝑅 ∈ Grp ∧ (𝐽 × (𝐺𝐼)) ∈ 𝐵 ∧ ((𝑆𝐶)‘𝐷) ∈ 𝐵) → (((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 ↔ (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷)))
8753, 85, 78, 86syl3anc 1369 . 2 (𝜑 → (((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 ↔ (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷)))
8883, 87mpbid 231 1 (𝜑 → (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wss 3947  {csn 4629  cop 4635   I cid 5575  cres 5680  cfv 6548  (class class class)co 7420  Basecbs 17179  +gcplusg 17232  .rcmulr 17233  Scalarcsca 17235   ·𝑠 cvsca 17236  0gc0g 17420  Grpcgrp 18889  -gcsg 18891  1rcur 20120  Ringcrg 20172  LModclmod 20742  HLchlt 38822  LHypclh 39457  LTrncltrn 39574  DVecHcdvh 40551  ocHcoch 40820  HVMapchvm 41229  HDMapchdma 41265  HGMapchg 41356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-riotaBAD 38425
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-tpos 8231  df-undef 8278  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-0g 17422  df-mre 17565  df-mrc 17566  df-acs 17568  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-grp 18892  df-minusg 18893  df-sbg 18894  df-subg 19077  df-cntz 19267  df-oppg 19296  df-lsm 19590  df-cmn 19736  df-abl 19737  df-mgp 20074  df-rng 20092  df-ur 20121  df-ring 20174  df-oppr 20272  df-dvdsr 20295  df-unit 20296  df-invr 20326  df-dvr 20339  df-drng 20625  df-lmod 20744  df-lss 20815  df-lsp 20855  df-lvec 20987  df-lsatoms 38448  df-lshyp 38449  df-lcv 38491  df-lfl 38530  df-lkr 38558  df-ldual 38596  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-llines 38971  df-lplanes 38972  df-lvols 38973  df-lines 38974  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-lhyp 39461  df-laut 39462  df-ldil 39577  df-ltrn 39578  df-trl 39632  df-tgrp 40216  df-tendo 40228  df-edring 40230  df-dveca 40476  df-disoa 40502  df-dvech 40552  df-dib 40612  df-dic 40646  df-dih 40702  df-doch 40821  df-djh 40868  df-lcdual 41060  df-mapd 41098  df-hvmap 41230  df-hdmap1 41266  df-hdmap 41267  df-hgmap 41357
This theorem is referenced by:  hdmapglem5  41395  hgmapvvlem1  41396
  Copyright terms: Public domain W3C validator