Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odcong | Structured version Visualization version GIF version |
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
odid.3 | ⊢ · = (.g‘𝐺) |
odid.4 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
odcong | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubcl 12472 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | |
2 | odcl.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
3 | odcl.2 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
4 | odid.3 | . . . 4 ⊢ · = (.g‘𝐺) | |
5 | odid.4 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
6 | 2, 3, 4, 5 | oddvds 19256 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 − 𝑁) ∈ ℤ) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ ((𝑀 − 𝑁) · 𝐴) = 0 )) |
7 | 1, 6 | syl3an3 1165 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ ((𝑀 − 𝑁) · 𝐴) = 0 )) |
8 | simp1 1136 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐺 ∈ Grp) | |
9 | simp3l 1201 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ) | |
10 | simp3r 1202 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ) | |
11 | simp2 1137 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐴 ∈ 𝑋) | |
12 | eqid 2737 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
13 | 2, 4, 12 | mulgsubdir 18844 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑀 − 𝑁) · 𝐴) = ((𝑀 · 𝐴)(-g‘𝐺)(𝑁 · 𝐴))) |
14 | 8, 9, 10, 11, 13 | syl13anc 1372 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 − 𝑁) · 𝐴) = ((𝑀 · 𝐴)(-g‘𝐺)(𝑁 · 𝐴))) |
15 | 14 | eqeq1d 2739 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 − 𝑁) · 𝐴) = 0 ↔ ((𝑀 · 𝐴)(-g‘𝐺)(𝑁 · 𝐴)) = 0 )) |
16 | 2, 4 | mulgcl 18822 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑀 · 𝐴) ∈ 𝑋) |
17 | 8, 9, 11, 16 | syl3anc 1371 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 · 𝐴) ∈ 𝑋) |
18 | 2, 4 | mulgcl 18822 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑁 · 𝐴) ∈ 𝑋) |
19 | 8, 10, 11, 18 | syl3anc 1371 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋) |
20 | 2, 5, 12 | grpsubeq0 18762 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 · 𝐴) ∈ 𝑋 ∧ (𝑁 · 𝐴) ∈ 𝑋) → (((𝑀 · 𝐴)(-g‘𝐺)(𝑁 · 𝐴)) = 0 ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
21 | 8, 17, 19, 20 | syl3anc 1371 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 · 𝐴)(-g‘𝐺)(𝑁 · 𝐴)) = 0 ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
22 | 7, 15, 21 | 3bitrd 305 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5100 ‘cfv 6488 (class class class)co 7346 − cmin 11315 ℤcz 12429 ∥ cdvds 16067 Basecbs 17014 0gc0g 17252 Grpcgrp 18678 -gcsg 18680 .gcmg 18801 odcod 19233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-sup 9308 df-inf 9309 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-n0 12344 df-z 12430 df-uz 12693 df-rp 12841 df-fz 13350 df-fl 13622 df-mod 13700 df-seq 13832 df-exp 13893 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 df-dvds 16068 df-0g 17254 df-mgm 18428 df-sgrp 18477 df-mnd 18488 df-grp 18681 df-minusg 18682 df-sbg 18683 df-mulg 18802 df-od 19237 |
This theorem is referenced by: odf1 19270 dfod2 19272 odf1o1 19278 odf1o2 19279 ablsimpgfindlem1 19809 chrcong 20843 cygznlem1 20884 dchrptlem1 26522 |
Copyright terms: Public domain | W3C validator |