MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcong Structured version   Visualization version   GIF version

Theorem odcong 19446
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odcong ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem odcong
StepHypRef Expression
1 zsubcl 12535 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
2 odcl.1 . . . 4 𝑋 = (Base‘𝐺)
3 odcl.2 . . . 4 𝑂 = (od‘𝐺)
4 odid.3 . . . 4 · = (.g𝐺)
5 odid.4 . . . 4 0 = (0g𝐺)
62, 3, 4, 5oddvds 19444 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀𝑁) ∈ ℤ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ ((𝑀𝑁) · 𝐴) = 0 ))
71, 6syl3an3 1165 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ ((𝑀𝑁) · 𝐴) = 0 ))
8 simp1 1136 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐺 ∈ Grp)
9 simp3l 1202 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
10 simp3r 1203 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
11 simp2 1137 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐴𝑋)
12 eqid 2729 . . . . 5 (-g𝐺) = (-g𝐺)
132, 4, 12mulgsubdir 19011 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑀𝑁) · 𝐴) = ((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)))
148, 9, 10, 11, 13syl13anc 1374 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑁) · 𝐴) = ((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)))
1514eqeq1d 2731 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀𝑁) · 𝐴) = 0 ↔ ((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)) = 0 ))
162, 4mulgcl 18988 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴𝑋) → (𝑀 · 𝐴) ∈ 𝑋)
178, 9, 11, 16syl3anc 1373 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 · 𝐴) ∈ 𝑋)
182, 4mulgcl 18988 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
198, 10, 11, 18syl3anc 1373 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋)
202, 5, 12grpsubeq0 18923 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 · 𝐴) ∈ 𝑋 ∧ (𝑁 · 𝐴) ∈ 𝑋) → (((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)) = 0 ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
218, 17, 19, 20syl3anc 1373 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)) = 0 ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
227, 15, 213bitrd 305 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cmin 11365  cz 12489  cdvds 16181  Basecbs 17138  0gc0g 17361  Grpcgrp 18830  -gcsg 18832  .gcmg 18964  odcod 19421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-od 19425
This theorem is referenced by:  odf1  19459  dfod2  19461  odf1o1  19469  odf1o2  19470  ablsimpgfindlem1  20006  chrcong  21452  cygznlem1  21491  dchrptlem1  27191
  Copyright terms: Public domain W3C validator