MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcong Structured version   Visualization version   GIF version

Theorem odcong 18442
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odcong ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem odcong
StepHypRef Expression
1 zsubcl 11840 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
2 odcl.1 . . . 4 𝑋 = (Base‘𝐺)
3 odcl.2 . . . 4 𝑂 = (od‘𝐺)
4 odid.3 . . . 4 · = (.g𝐺)
5 odid.4 . . . 4 0 = (0g𝐺)
62, 3, 4, 5oddvds 18440 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀𝑁) ∈ ℤ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ ((𝑀𝑁) · 𝐴) = 0 ))
71, 6syl3an3 1145 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ ((𝑀𝑁) · 𝐴) = 0 ))
8 simp1 1116 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐺 ∈ Grp)
9 simp3l 1181 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
10 simp3r 1182 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
11 simp2 1117 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐴𝑋)
12 eqid 2778 . . . . 5 (-g𝐺) = (-g𝐺)
132, 4, 12mulgsubdir 18054 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑀𝑁) · 𝐴) = ((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)))
148, 9, 10, 11, 13syl13anc 1352 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑁) · 𝐴) = ((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)))
1514eqeq1d 2780 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀𝑁) · 𝐴) = 0 ↔ ((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)) = 0 ))
162, 4mulgcl 18033 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴𝑋) → (𝑀 · 𝐴) ∈ 𝑋)
178, 9, 11, 16syl3anc 1351 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 · 𝐴) ∈ 𝑋)
182, 4mulgcl 18033 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
198, 10, 11, 18syl3anc 1351 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋)
202, 5, 12grpsubeq0 17975 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 · 𝐴) ∈ 𝑋 ∧ (𝑁 · 𝐴) ∈ 𝑋) → (((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)) = 0 ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
218, 17, 19, 20syl3anc 1351 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)) = 0 ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
227, 15, 213bitrd 297 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050   class class class wbr 4930  cfv 6190  (class class class)co 6978  cmin 10672  cz 11796  cdvds 15470  Basecbs 16342  0gc0g 16572  Grpcgrp 17894  -gcsg 17896  .gcmg 18014  odcod 18417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-sup 8703  df-inf 8704  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-n0 11711  df-z 11797  df-uz 12062  df-rp 12208  df-fz 12712  df-fl 12980  df-mod 13056  df-seq 13188  df-exp 13248  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-dvds 15471  df-0g 16574  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-grp 17897  df-minusg 17898  df-sbg 17899  df-mulg 18015  df-od 18421
This theorem is referenced by:  odf1  18453  dfod2  18455  odf1o1  18461  odf1o2  18462  chrcong  20381  cygznlem1  20418  dchrptlem1  25545  ablsimpgfindlem1  40043
  Copyright terms: Public domain W3C validator