![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odcong | Structured version Visualization version GIF version |
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
odid.3 | ⊢ · = (.g‘𝐺) |
odid.4 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
odcong | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubcl 11840 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | |
2 | odcl.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
3 | odcl.2 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
4 | odid.3 | . . . 4 ⊢ · = (.g‘𝐺) | |
5 | odid.4 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
6 | 2, 3, 4, 5 | oddvds 18440 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 − 𝑁) ∈ ℤ) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ ((𝑀 − 𝑁) · 𝐴) = 0 )) |
7 | 1, 6 | syl3an3 1145 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ ((𝑀 − 𝑁) · 𝐴) = 0 )) |
8 | simp1 1116 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐺 ∈ Grp) | |
9 | simp3l 1181 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ) | |
10 | simp3r 1182 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ) | |
11 | simp2 1117 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐴 ∈ 𝑋) | |
12 | eqid 2778 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
13 | 2, 4, 12 | mulgsubdir 18054 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑀 − 𝑁) · 𝐴) = ((𝑀 · 𝐴)(-g‘𝐺)(𝑁 · 𝐴))) |
14 | 8, 9, 10, 11, 13 | syl13anc 1352 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 − 𝑁) · 𝐴) = ((𝑀 · 𝐴)(-g‘𝐺)(𝑁 · 𝐴))) |
15 | 14 | eqeq1d 2780 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 − 𝑁) · 𝐴) = 0 ↔ ((𝑀 · 𝐴)(-g‘𝐺)(𝑁 · 𝐴)) = 0 )) |
16 | 2, 4 | mulgcl 18033 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑀 · 𝐴) ∈ 𝑋) |
17 | 8, 9, 11, 16 | syl3anc 1351 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 · 𝐴) ∈ 𝑋) |
18 | 2, 4 | mulgcl 18033 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑁 · 𝐴) ∈ 𝑋) |
19 | 8, 10, 11, 18 | syl3anc 1351 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋) |
20 | 2, 5, 12 | grpsubeq0 17975 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 · 𝐴) ∈ 𝑋 ∧ (𝑁 · 𝐴) ∈ 𝑋) → (((𝑀 · 𝐴)(-g‘𝐺)(𝑁 · 𝐴)) = 0 ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
21 | 8, 17, 19, 20 | syl3anc 1351 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 · 𝐴)(-g‘𝐺)(𝑁 · 𝐴)) = 0 ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
22 | 7, 15, 21 | 3bitrd 297 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 class class class wbr 4930 ‘cfv 6190 (class class class)co 6978 − cmin 10672 ℤcz 11796 ∥ cdvds 15470 Basecbs 16342 0gc0g 16572 Grpcgrp 17894 -gcsg 17896 .gcmg 18014 odcod 18417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 ax-pre-sup 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-1st 7503 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-sup 8703 df-inf 8704 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-div 11101 df-nn 11442 df-2 11506 df-3 11507 df-n0 11711 df-z 11797 df-uz 12062 df-rp 12208 df-fz 12712 df-fl 12980 df-mod 13056 df-seq 13188 df-exp 13248 df-cj 14322 df-re 14323 df-im 14324 df-sqrt 14458 df-abs 14459 df-dvds 15471 df-0g 16574 df-mgm 17713 df-sgrp 17755 df-mnd 17766 df-grp 17897 df-minusg 17898 df-sbg 17899 df-mulg 18015 df-od 18421 |
This theorem is referenced by: odf1 18453 dfod2 18455 odf1o1 18461 odf1o2 18462 chrcong 20381 cygznlem1 20418 dchrptlem1 25545 ablsimpgfindlem1 40043 |
Copyright terms: Public domain | W3C validator |