MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem3 Structured version   Visualization version   GIF version

Theorem infxpenc2lem3 9683
Description: Lemma for infxpenc2 9684. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc2.1 (𝜑𝐴 ∈ On)
infxpenc2.2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
infxpenc2.3 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
infxpenc2.4 (𝜑𝐹:(ω ↑o 2o)–1-1-onto→ω)
infxpenc2.5 (𝜑 → (𝐹‘∅) = ∅)
Assertion
Ref Expression
infxpenc2lem3 (𝜑 → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Distinct variable groups:   𝑔,𝑏,𝑛,𝑤,𝑥,𝐴   𝜑,𝑏,𝑤,𝑥   𝑔,𝑊,𝑤,𝑥   𝑔,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑔,𝑛)   𝐹(𝑤,𝑛,𝑏)   𝑊(𝑛,𝑏)

Proof of Theorem infxpenc2lem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpenc2.1 . 2 (𝜑𝐴 ∈ On)
2 infxpenc2.2 . 2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3 infxpenc2.3 . 2 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
4 infxpenc2.4 . 2 (𝜑𝐹:(ω ↑o 2o)–1-1-onto→ω)
5 infxpenc2.5 . 2 (𝜑 → (𝐹‘∅) = ∅)
6 eqid 2739 . 2 (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊)))) = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
7 eqid 2739 . 2 (((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑o 2o) CNF 𝑊)) = (((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑o 2o) CNF 𝑊))
8 eqid 2739 . 2 (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)))))) = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))
9 eqid 2739 . 2 (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)) = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))
10 eqid 2739 . 2 (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧))
11 eqid 2739 . 2 (((ω CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ (ω CNF (𝑊 ·o 2o))) = (((ω CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ (ω CNF (𝑊 ·o 2o)))
12 eqid 2739 . 2 (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦)) = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))
13 eqid 2739 . 2 (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩) = (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩)
14 eqid 2739 . 2 ((𝑛𝑏) ∘ ((((((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑o 2o) CNF 𝑊)) ∘ (((ω CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ (ω CNF (𝑊 ·o 2o)))) ∘ (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))) ∘ (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩))) = ((𝑛𝑏) ∘ ((((((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑o 2o) CNF 𝑊)) ∘ (((ω CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ (ω CNF (𝑊 ·o 2o)))) ∘ (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))) ∘ (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩)))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14infxpenc2lem2 9682 1 (𝜑 → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wex 1787  wcel 2112  wral 3064  wrex 3065  {crab 3068  cdif 3881  wss 3884  c0 4254  cop 4564   class class class wbr 5070  cmpt 5152   I cid 5478   × cxp 5577  ccnv 5578  ran crn 5580  cres 5581  ccom 5583  Oncon0 6248  1-1-ontowf1o 6414  cfv 6415  (class class class)co 7252  cmpo 7254  ωcom 7684  1oc1o 8237  2oc2o 8238   +o coa 8241   ·o comu 8242  o coe 8243  m cmap 8550   finSupp cfsupp 9033   CNF ccnf 9324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-inf2 9304
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-se 5535  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-isom 6424  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-1st 7801  df-2nd 7802  df-supp 7946  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-seqom 8226  df-1o 8244  df-2o 8245  df-oadd 8248  df-omul 8249  df-oexp 8250  df-er 8433  df-map 8552  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-fsupp 9034  df-oi 9174  df-cnf 9325
This theorem is referenced by:  infxpenc2  9684
  Copyright terms: Public domain W3C validator