MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem3 Structured version   Visualization version   GIF version

Theorem infxpenc2lem3 9962
Description: Lemma for infxpenc2 9963. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc2.1 (πœ‘ β†’ 𝐴 ∈ On)
infxpenc2.2 (πœ‘ β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
infxpenc2.3 π‘Š = (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘))
infxpenc2.4 (πœ‘ β†’ 𝐹:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
infxpenc2.5 (πœ‘ β†’ (πΉβ€˜βˆ…) = βˆ…)
Assertion
Ref Expression
infxpenc2lem3 (πœ‘ β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
Distinct variable groups:   𝑔,𝑏,𝑛,𝑀,π‘₯,𝐴   πœ‘,𝑏,𝑀,π‘₯   𝑔,π‘Š,𝑀,π‘₯   𝑔,𝐹,π‘₯
Allowed substitution hints:   πœ‘(𝑔,𝑛)   𝐹(𝑀,𝑛,𝑏)   π‘Š(𝑛,𝑏)

Proof of Theorem infxpenc2lem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpenc2.1 . 2 (πœ‘ β†’ 𝐴 ∈ On)
2 infxpenc2.2 . 2 (πœ‘ β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3 infxpenc2.3 . 2 π‘Š = (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘))
4 infxpenc2.4 . 2 (πœ‘ β†’ 𝐹:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
5 infxpenc2.5 . 2 (πœ‘ β†’ (πΉβ€˜βˆ…) = βˆ…)
6 eqid 2733 . 2 (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š)))) = (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))
7 eqid 2733 . 2 (((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š)) = (((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š))
8 eqid 2733 . 2 (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀)))))) = (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))
9 eqid 2733 . 2 (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀)) = (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))
10 eqid 2733 . 2 (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) = (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧))
11 eqid 2733 . 2 (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o))) = (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o)))
12 eqid 2733 . 2 (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦)) = (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦))
13 eqid 2733 . 2 (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩) = (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩)
14 eqid 2733 . 2 (β—‘(π‘›β€˜π‘) ∘ ((((((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š)) ∘ (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o)))) ∘ (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦))) ∘ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩))) = (β—‘(π‘›β€˜π‘) ∘ ((((((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š)) ∘ (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o)))) ∘ (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦))) ∘ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩)))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14infxpenc2lem2 9961 1 (πœ‘ β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  βˆ€wral 3061  βˆƒwrex 3070  {crab 3406   βˆ– cdif 3908   βŠ† wss 3911  βˆ…c0 4283  βŸ¨cop 4593   class class class wbr 5106   ↦ cmpt 5189   I cid 5531   Γ— cxp 5632  β—‘ccnv 5633  ran crn 5635   β†Ύ cres 5636   ∘ ccom 5638  Oncon0 6318  β€“1-1-ontoβ†’wf1o 6496  β€˜cfv 6497  (class class class)co 7358   ∈ cmpo 7360  Ο‰com 7803  1oc1o 8406  2oc2o 8407   +o coa 8410   Β·o comu 8411   ↑o coe 8412   ↑m cmap 8768   finSupp cfsupp 9308   CNF ccnf 9602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-seqom 8395  df-1o 8413  df-2o 8414  df-oadd 8417  df-omul 8418  df-oexp 8419  df-er 8651  df-map 8770  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-oi 9451  df-cnf 9603
This theorem is referenced by:  infxpenc2  9963
  Copyright terms: Public domain W3C validator