Step | Hyp | Ref
| Expression |
1 | | infxpenc2.1 |
. 2
⊢ (𝜑 → 𝐴 ∈ On) |
2 | | infxpenc2.2 |
. 2
⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) |
3 | | infxpenc2.3 |
. 2
⊢ 𝑊 = (◡(𝑥 ∈ (On ∖ 1o) ↦
(ω ↑o 𝑥))‘ran (𝑛‘𝑏)) |
4 | | infxpenc2.4 |
. 2
⊢ (𝜑 → 𝐹:(ω ↑o
2o)–1-1-onto→ω) |
5 | | infxpenc2.5 |
. 2
⊢ (𝜑 → (𝐹‘∅) = ∅) |
6 | | eqid 2738 |
. 2
⊢ (𝑦 ∈ {𝑥 ∈ ((ω ↑o
2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊)))) = (𝑦 ∈ {𝑥 ∈ ((ω ↑o
2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊)))) |
7 | | eqid 2738 |
. 2
⊢
(((ω CNF 𝑊)
∘ (𝑦 ∈ {𝑥 ∈ ((ω
↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊))))) ∘ ◡((ω ↑o 2o)
CNF 𝑊)) = (((ω CNF
𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o
2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊))))) ∘ ◡((ω ↑o 2o)
CNF 𝑊)) |
8 | | eqid 2738 |
. 2
⊢ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o
2o)) ∣ 𝑥
finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡((𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o
·o 𝑤)
+o 𝑧)) ∘
◡(𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)))))) = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o
2o)) ∣ 𝑥
finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡((𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o
·o 𝑤)
+o 𝑧)) ∘
◡(𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)))))) |
9 | | eqid 2738 |
. 2
⊢ (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)) = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)) |
10 | | eqid 2738 |
. 2
⊢ (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o
·o 𝑤)
+o 𝑧)) = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o
·o 𝑤)
+o 𝑧)) |
11 | | eqid 2738 |
. 2
⊢
(((ω CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o
2o)) ∣ 𝑥
finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡((𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o
·o 𝑤)
+o 𝑧)) ∘
◡(𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ ◡(ω CNF (𝑊 ·o 2o))) =
(((ω CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o
2o)) ∣ 𝑥
finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡((𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o
·o 𝑤)
+o 𝑧)) ∘
◡(𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ ◡(ω CNF (𝑊 ·o
2o))) |
12 | | eqid 2738 |
. 2
⊢ (𝑥 ∈ (ω
↑o 𝑊),
𝑦 ∈ (ω
↑o 𝑊)
↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦)) = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω
↑o 𝑊)
·o 𝑥)
+o 𝑦)) |
13 | | eqid 2738 |
. 2
⊢ (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ 〈((𝑛‘𝑏)‘𝑥), ((𝑛‘𝑏)‘𝑦)〉) = (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ 〈((𝑛‘𝑏)‘𝑥), ((𝑛‘𝑏)‘𝑦)〉) |
14 | | eqid 2738 |
. 2
⊢ (◡(𝑛‘𝑏) ∘ ((((((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o
2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊))))) ∘ ◡((ω ↑o 2o)
CNF 𝑊)) ∘ (((ω
CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o
2o)) ∣ 𝑥
finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡((𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o
·o 𝑤)
+o 𝑧)) ∘
◡(𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ ◡(ω CNF (𝑊 ·o 2o))))
∘ (𝑥 ∈ (ω
↑o 𝑊),
𝑦 ∈ (ω
↑o 𝑊)
↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))) ∘ (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ 〈((𝑛‘𝑏)‘𝑥), ((𝑛‘𝑏)‘𝑦)〉))) = (◡(𝑛‘𝑏) ∘ ((((((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o
2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊))))) ∘ ◡((ω ↑o 2o)
CNF 𝑊)) ∘ (((ω
CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o
2o)) ∣ 𝑥
finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡((𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o
·o 𝑤)
+o 𝑧)) ∘
◡(𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ ◡(ω CNF (𝑊 ·o 2o))))
∘ (𝑥 ∈ (ω
↑o 𝑊),
𝑦 ∈ (ω
↑o 𝑊)
↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))) ∘ (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ 〈((𝑛‘𝑏)‘𝑥), ((𝑛‘𝑏)‘𝑦)〉))) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 | infxpenc2lem2 9776 |
1
⊢ (𝜑 → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) |