MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem3 Structured version   Visualization version   GIF version

Theorem infxpenc2lem3 10015
Description: Lemma for infxpenc2 10016. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc2.1 (πœ‘ β†’ 𝐴 ∈ On)
infxpenc2.2 (πœ‘ β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
infxpenc2.3 π‘Š = (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘))
infxpenc2.4 (πœ‘ β†’ 𝐹:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
infxpenc2.5 (πœ‘ β†’ (πΉβ€˜βˆ…) = βˆ…)
Assertion
Ref Expression
infxpenc2lem3 (πœ‘ β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
Distinct variable groups:   𝑔,𝑏,𝑛,𝑀,π‘₯,𝐴   πœ‘,𝑏,𝑀,π‘₯   𝑔,π‘Š,𝑀,π‘₯   𝑔,𝐹,π‘₯
Allowed substitution hints:   πœ‘(𝑔,𝑛)   𝐹(𝑀,𝑛,𝑏)   π‘Š(𝑛,𝑏)

Proof of Theorem infxpenc2lem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpenc2.1 . 2 (πœ‘ β†’ 𝐴 ∈ On)
2 infxpenc2.2 . 2 (πœ‘ β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3 infxpenc2.3 . 2 π‘Š = (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘))
4 infxpenc2.4 . 2 (πœ‘ β†’ 𝐹:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
5 infxpenc2.5 . 2 (πœ‘ β†’ (πΉβ€˜βˆ…) = βˆ…)
6 eqid 2732 . 2 (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š)))) = (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))
7 eqid 2732 . 2 (((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š)) = (((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š))
8 eqid 2732 . 2 (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀)))))) = (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))
9 eqid 2732 . 2 (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀)) = (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))
10 eqid 2732 . 2 (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) = (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧))
11 eqid 2732 . 2 (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o))) = (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o)))
12 eqid 2732 . 2 (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦)) = (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦))
13 eqid 2732 . 2 (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩) = (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩)
14 eqid 2732 . 2 (β—‘(π‘›β€˜π‘) ∘ ((((((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š)) ∘ (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o)))) ∘ (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦))) ∘ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩))) = (β—‘(π‘›β€˜π‘) ∘ ((((((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š)) ∘ (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o)))) ∘ (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦))) ∘ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩)))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14infxpenc2lem2 10014 1 (πœ‘ β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   βˆ– cdif 3945   βŠ† wss 3948  βˆ…c0 4322  βŸ¨cop 4634   class class class wbr 5148   ↦ cmpt 5231   I cid 5573   Γ— cxp 5674  β—‘ccnv 5675  ran crn 5677   β†Ύ cres 5678   ∘ ccom 5680  Oncon0 6364  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  Ο‰com 7854  1oc1o 8458  2oc2o 8459   +o coa 8462   Β·o comu 8463   ↑o coe 8464   ↑m cmap 8819   finSupp cfsupp 9360   CNF ccnf 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-seqom 8447  df-1o 8465  df-2o 8466  df-oadd 8469  df-omul 8470  df-oexp 8471  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-oi 9504  df-cnf 9656
This theorem is referenced by:  infxpenc2  10016
  Copyright terms: Public domain W3C validator