MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem3 Structured version   Visualization version   GIF version

Theorem infxpenc2lem3 9446
Description: Lemma for infxpenc2 9447. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc2.1 (𝜑𝐴 ∈ On)
infxpenc2.2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
infxpenc2.3 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
infxpenc2.4 (𝜑𝐹:(ω ↑o 2o)–1-1-onto→ω)
infxpenc2.5 (𝜑 → (𝐹‘∅) = ∅)
Assertion
Ref Expression
infxpenc2lem3 (𝜑 → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Distinct variable groups:   𝑔,𝑏,𝑛,𝑤,𝑥,𝐴   𝜑,𝑏,𝑤,𝑥   𝑔,𝑊,𝑤,𝑥   𝑔,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑔,𝑛)   𝐹(𝑤,𝑛,𝑏)   𝑊(𝑛,𝑏)

Proof of Theorem infxpenc2lem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpenc2.1 . 2 (𝜑𝐴 ∈ On)
2 infxpenc2.2 . 2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3 infxpenc2.3 . 2 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
4 infxpenc2.4 . 2 (𝜑𝐹:(ω ↑o 2o)–1-1-onto→ω)
5 infxpenc2.5 . 2 (𝜑 → (𝐹‘∅) = ∅)
6 eqid 2821 . 2 (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊)))) = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
7 eqid 2821 . 2 (((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑o 2o) CNF 𝑊)) = (((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑o 2o) CNF 𝑊))
8 eqid 2821 . 2 (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)))))) = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))
9 eqid 2821 . 2 (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)) = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))
10 eqid 2821 . 2 (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧))
11 eqid 2821 . 2 (((ω CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ (ω CNF (𝑊 ·o 2o))) = (((ω CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ (ω CNF (𝑊 ·o 2o)))
12 eqid 2821 . 2 (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦)) = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))
13 eqid 2821 . 2 (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩) = (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩)
14 eqid 2821 . 2 ((𝑛𝑏) ∘ ((((((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑o 2o) CNF 𝑊)) ∘ (((ω CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ (ω CNF (𝑊 ·o 2o)))) ∘ (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))) ∘ (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩))) = ((𝑛𝑏) ∘ ((((((ω CNF 𝑊) ∘ (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))) ∘ ((ω ↑o 2o) CNF 𝑊)) ∘ (((ω CNF (2o ·o 𝑊)) ∘ (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦((𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) ∘ (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))))))) ∘ (ω CNF (𝑊 ·o 2o)))) ∘ (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))) ∘ (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩)))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14infxpenc2lem2 9445 1 (𝜑 → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wex 1776  wcel 2110  wral 3138  wrex 3139  {crab 3142  cdif 3932  wss 3935  c0 4290  cop 4572   class class class wbr 5065  cmpt 5145   I cid 5458   × cxp 5552  ccnv 5553  ran crn 5555  cres 5556  ccom 5558  Oncon0 6190  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  cmpo 7157  ωcom 7579  1oc1o 8094  2oc2o 8095   +o coa 8098   ·o comu 8099  o coe 8100  m cmap 8405   finSupp cfsupp 8832   CNF ccnf 9123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-seqom 8083  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-oexp 8107  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-oi 8973  df-cnf 9124
This theorem is referenced by:  infxpenc2  9447
  Copyright terms: Public domain W3C validator