MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem3 Structured version   Visualization version   GIF version

Theorem infxpenc2lem3 10039
Description: Lemma for infxpenc2 10040. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc2.1 (πœ‘ β†’ 𝐴 ∈ On)
infxpenc2.2 (πœ‘ β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
infxpenc2.3 π‘Š = (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘))
infxpenc2.4 (πœ‘ β†’ 𝐹:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
infxpenc2.5 (πœ‘ β†’ (πΉβ€˜βˆ…) = βˆ…)
Assertion
Ref Expression
infxpenc2lem3 (πœ‘ β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
Distinct variable groups:   𝑔,𝑏,𝑛,𝑀,π‘₯,𝐴   πœ‘,𝑏,𝑀,π‘₯   𝑔,π‘Š,𝑀,π‘₯   𝑔,𝐹,π‘₯
Allowed substitution hints:   πœ‘(𝑔,𝑛)   𝐹(𝑀,𝑛,𝑏)   π‘Š(𝑛,𝑏)

Proof of Theorem infxpenc2lem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpenc2.1 . 2 (πœ‘ β†’ 𝐴 ∈ On)
2 infxpenc2.2 . 2 (πœ‘ β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3 infxpenc2.3 . 2 π‘Š = (β—‘(π‘₯ ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o π‘₯))β€˜ran (π‘›β€˜π‘))
4 infxpenc2.4 . 2 (πœ‘ β†’ 𝐹:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
5 infxpenc2.5 . 2 (πœ‘ β†’ (πΉβ€˜βˆ…) = βˆ…)
6 eqid 2725 . 2 (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š)))) = (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))
7 eqid 2725 . 2 (((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š)) = (((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š))
8 eqid 2725 . 2 (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀)))))) = (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))
9 eqid 2725 . 2 (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀)) = (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))
10 eqid 2725 . 2 (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) = (𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧))
11 eqid 2725 . 2 (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o))) = (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o)))
12 eqid 2725 . 2 (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦)) = (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦))
13 eqid 2725 . 2 (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩) = (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩)
14 eqid 2725 . 2 (β—‘(π‘›β€˜π‘) ∘ ((((((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š)) ∘ (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o)))) ∘ (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦))) ∘ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩))) = (β—‘(π‘›β€˜π‘) ∘ ((((((Ο‰ CNF π‘Š) ∘ (𝑦 ∈ {π‘₯ ∈ ((Ο‰ ↑o 2o) ↑m π‘Š) ∣ π‘₯ finSupp βˆ…} ↦ (𝐹 ∘ (𝑦 ∘ β—‘( I β†Ύ π‘Š))))) ∘ β—‘((Ο‰ ↑o 2o) CNF π‘Š)) ∘ (((Ο‰ CNF (2o Β·o π‘Š)) ∘ (𝑦 ∈ {π‘₯ ∈ (Ο‰ ↑m (π‘Š Β·o 2o)) ∣ π‘₯ finSupp βˆ…} ↦ (( I β†Ύ Ο‰) ∘ (𝑦 ∘ β—‘((𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((2o Β·o 𝑀) +o 𝑧)) ∘ β—‘(𝑧 ∈ 2o, 𝑀 ∈ π‘Š ↦ ((π‘Š Β·o 𝑧) +o 𝑀))))))) ∘ β—‘(Ο‰ CNF (π‘Š Β·o 2o)))) ∘ (π‘₯ ∈ (Ο‰ ↑o π‘Š), 𝑦 ∈ (Ο‰ ↑o π‘Š) ↦ (((Ο‰ ↑o π‘Š) Β·o π‘₯) +o 𝑦))) ∘ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ ⟨((π‘›β€˜π‘)β€˜π‘₯), ((π‘›β€˜π‘)β€˜π‘¦)⟩)))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14infxpenc2lem2 10038 1 (πœ‘ β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  βˆ€wral 3051  βˆƒwrex 3060  {crab 3419   βˆ– cdif 3938   βŠ† wss 3941  βˆ…c0 4319  βŸ¨cop 4631   class class class wbr 5144   ↦ cmpt 5227   I cid 5570   Γ— cxp 5671  β—‘ccnv 5672  ran crn 5674   β†Ύ cres 5675   ∘ ccom 5677  Oncon0 6365  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7413   ∈ cmpo 7415  Ο‰com 7865  1oc1o 8473  2oc2o 8474   +o coa 8477   Β·o comu 8478   ↑o coe 8479   ↑m cmap 8838   finSupp cfsupp 9380   CNF ccnf 9679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-supp 8159  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9381  df-oi 9528  df-cnf 9680
This theorem is referenced by:  infxpenc2  10040
  Copyright terms: Public domain W3C validator