| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptres | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| dvmptres.y | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| dvmptres.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvmptres.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvmptres.t | ⊢ (𝜑 → 𝑌 ∈ 𝐽) |
| Ref | Expression |
|---|---|
| dvmptres | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvmptadd.a | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 3 | dvmptadd.b | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 4 | dvmptadd.da | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 5 | dvmptres.y | . 2 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 6 | dvmptres.j | . 2 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 7 | dvmptres.k | . 2 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 8 | 7 | cnfldtop 24718 | . . . . 5 ⊢ 𝐾 ∈ Top |
| 9 | resttop 23095 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐾 ↾t 𝑆) ∈ Top) | |
| 10 | 8, 1, 9 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ Top) |
| 11 | 6, 10 | eqeltrid 2837 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 12 | dvmptres.t | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐽) | |
| 13 | isopn3i 23017 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝐽) → ((int‘𝐽)‘𝑌) = 𝑌) | |
| 14 | 11, 12, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 14 | dvmptres2 25913 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {cpr 4579 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 ℝcr 11016 ↾t crest 17331 TopOpenctopn 17332 ℂfldccnfld 21300 Topctop 22828 intcnt 22952 D cdv 25811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9306 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-fz 13415 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-mulr 17182 df-starv 17183 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-rest 17333 df-topn 17334 df-topgen 17354 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-cnp 23163 df-xms 24255 df-ms 24256 df-limc 25814 df-dv 25815 |
| This theorem is referenced by: dvmptfsum 25926 dvexp3 25929 dvlipcn 25946 dvivthlem1 25960 lhop2 25967 dvfsumle 25973 dvfsumleOLD 25974 dvfsumabs 25976 dvfsumlem2 25980 dvfsumlem2OLD 25981 taylthlem2 26329 taylthlem2OLD 26330 pserdvlem2 26385 advlog 26610 advlogexp 26611 logtayl 26616 loglesqrt 26718 dvatan 26892 log2sumbnd 27502 dvtan 37783 dvasin 37817 dvacos 37818 areacirclem1 37821 aks4d1p1p6 42239 redvmptabs 42530 readvrec2 42531 readvcot 42534 dvmptconst 46075 dvmptidg 46077 itgsin0pilem1 46110 itgsbtaddcnst 46142 fourierdlem56 46322 fourierdlem60 46326 fourierdlem61 46327 fourierdlem62 46328 |
| Copyright terms: Public domain | W3C validator |