![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptres | Structured version Visualization version GIF version |
Description: Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
dvmptres.y | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
dvmptres.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvmptres.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvmptres.t | ⊢ (𝜑 → 𝑌 ∈ 𝐽) |
Ref | Expression |
---|---|
dvmptres | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptadd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvmptadd.a | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
3 | dvmptadd.b | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
4 | dvmptadd.da | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
5 | dvmptres.y | . 2 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
6 | dvmptres.j | . 2 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
7 | dvmptres.k | . 2 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
8 | 7 | cnfldtop 24825 | . . . . 5 ⊢ 𝐾 ∈ Top |
9 | resttop 23189 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐾 ↾t 𝑆) ∈ Top) | |
10 | 8, 1, 9 | sylancr 586 | . . . 4 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ Top) |
11 | 6, 10 | eqeltrid 2848 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
12 | dvmptres.t | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐽) | |
13 | isopn3i 23111 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝐽) → ((int‘𝐽)‘𝑌) = 𝑌) | |
14 | 11, 12, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌) |
15 | 1, 2, 3, 4, 5, 6, 7, 14 | dvmptres2 26020 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {cpr 4650 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 ↾t crest 17480 TopOpenctopn 17481 ℂfldccnfld 21387 Topctop 22920 intcnt 23046 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-cnp 23257 df-xms 24351 df-ms 24352 df-limc 25921 df-dv 25922 |
This theorem is referenced by: dvmptfsum 26033 dvexp3 26036 dvlipcn 26053 dvivthlem1 26067 lhop2 26074 dvfsumle 26080 dvfsumleOLD 26081 dvfsumabs 26083 dvfsumlem2 26087 dvfsumlem2OLD 26088 taylthlem2 26434 taylthlem2OLD 26435 pserdvlem2 26490 advlog 26714 advlogexp 26715 logtayl 26720 loglesqrt 26822 dvatan 26996 log2sumbnd 27606 dvtan 37630 dvasin 37664 dvacos 37665 areacirclem1 37668 aks4d1p1p6 42030 dvmptconst 45836 dvmptidg 45838 itgsin0pilem1 45871 itgsbtaddcnst 45903 fourierdlem56 46083 fourierdlem60 46087 fourierdlem61 46088 fourierdlem62 46089 |
Copyright terms: Public domain | W3C validator |