Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn4a Structured version   Visualization version   GIF version

Theorem cdlemn4a 39662
Description: Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
cdlemn4.b 𝐵 = (Base‘𝐾)
cdlemn4.l = (le‘𝐾)
cdlemn4.a 𝐴 = (Atoms‘𝐾)
cdlemn4.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn4.h 𝐻 = (LHyp‘𝐾)
cdlemn4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn4.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
cdlemn4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
cdlemn4.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn4.g 𝐺 = (𝑇 (𝑃) = 𝑅)
cdlemn4.j 𝐽 = (𝑇 (𝑄) = 𝑅)
cdlemn4a.n 𝑁 = (LSpan‘𝑈)
cdlemn4a.s = (LSSum‘𝑈)
Assertion
Ref Expression
cdlemn4a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}) ⊆ ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝐽, 𝑂⟩})))
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑃,   𝑄,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   ()   𝑈()   𝐹()   𝐺()   𝐽()   𝑁()   𝑂()

Proof of Theorem cdlemn4a
StepHypRef Expression
1 cdlemn4.b . . . . 5 𝐵 = (Base‘𝐾)
2 cdlemn4.l . . . . 5 = (le‘𝐾)
3 cdlemn4.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 cdlemn4.p . . . . 5 𝑃 = ((oc‘𝐾)‘𝑊)
5 cdlemn4.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 cdlemn4.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdlemn4.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
8 cdlemn4.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 cdlemn4.f . . . . 5 𝐹 = (𝑇 (𝑃) = 𝑄)
10 cdlemn4.g . . . . 5 𝐺 = (𝑇 (𝑃) = 𝑅)
11 cdlemn4.j . . . . 5 𝐽 = (𝑇 (𝑄) = 𝑅)
12 eqid 2736 . . . . 5 (+g𝑈) = (+g𝑈)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemn4 39661 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨𝐹, ( I ↾ 𝑇)⟩(+g𝑈)⟨𝐽, 𝑂⟩))
1413sneqd 4598 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → {⟨𝐺, ( I ↾ 𝑇)⟩} = {(⟨𝐹, ( I ↾ 𝑇)⟩(+g𝑈)⟨𝐽, 𝑂⟩)})
1514fveq2d 6846 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}) = (𝑁‘{(⟨𝐹, ( I ↾ 𝑇)⟩(+g𝑈)⟨𝐽, 𝑂⟩)}))
16 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
175, 8, 16dvhlmod 39573 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑈 ∈ LMod)
182, 3, 5, 4lhpocnel2 38482 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
19183ad2ant1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
20 simp2 1137 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
212, 3, 5, 6, 9ltrniotacl 39042 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
2216, 19, 20, 21syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹𝑇)
23 eqid 2736 . . . . . 6 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
245, 6, 23tendoidcl 39232 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
25243ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
26 eqid 2736 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
275, 6, 23, 8, 26dvhelvbasei 39551 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
2816, 22, 25, 27syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
292, 3, 5, 6, 11ltrniotacl 39042 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐽𝑇)
301, 5, 6, 23, 7tendo0cl 39253 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
31303ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
325, 6, 23, 8, 26dvhelvbasei 39551 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝐽, 𝑂⟩ ∈ (Base‘𝑈))
3316, 29, 31, 32syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨𝐽, 𝑂⟩ ∈ (Base‘𝑈))
34 cdlemn4a.n . . . 4 𝑁 = (LSpan‘𝑈)
35 cdlemn4a.s . . . 4 = (LSSum‘𝑈)
3626, 12, 34, 35lspsntri 20558 . . 3 ((𝑈 ∈ LMod ∧ ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈) ∧ ⟨𝐽, 𝑂⟩ ∈ (Base‘𝑈)) → (𝑁‘{(⟨𝐹, ( I ↾ 𝑇)⟩(+g𝑈)⟨𝐽, 𝑂⟩)}) ⊆ ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝐽, 𝑂⟩})))
3717, 28, 33, 36syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑁‘{(⟨𝐹, ( I ↾ 𝑇)⟩(+g𝑈)⟨𝐽, 𝑂⟩)}) ⊆ ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝐽, 𝑂⟩})))
3815, 37eqsstrd 3982 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}) ⊆ ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝐽, 𝑂⟩})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910  {csn 4586  cop 4592   class class class wbr 5105  cmpt 5188   I cid 5530  cres 5635  cfv 6496  crio 7312  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  lecple 17140  occoc 17141  LSSumclsm 19416  LModclmod 20322  LSpanclspn 20432  Atomscatm 37725  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  TEndoctendo 39215  DVecHcdvh 39541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tendo 39218  df-edring 39220  df-dvech 39542
This theorem is referenced by:  cdlemn5pre  39663
  Copyright terms: Public domain W3C validator