Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn4a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 24-Feb-2014.) |
Ref | Expression |
---|---|
cdlemn4.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemn4.l | ⊢ ≤ = (le‘𝐾) |
cdlemn4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemn4.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
cdlemn4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemn4.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemn4.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
cdlemn4.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
cdlemn4.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
cdlemn4.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) |
cdlemn4.j | ⊢ 𝐽 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑅) |
cdlemn4a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
cdlemn4a.s | ⊢ ⊕ = (LSSum‘𝑈) |
Ref | Expression |
---|---|
cdlemn4a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝐽, 𝑂〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemn4.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemn4.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemn4.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | cdlemn4.p | . . . . 5 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
5 | cdlemn4.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemn4.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | cdlemn4.o | . . . . 5 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
8 | cdlemn4.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
9 | cdlemn4.f | . . . . 5 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | |
10 | cdlemn4.g | . . . . 5 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) | |
11 | cdlemn4.j | . . . . 5 ⊢ 𝐽 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑅) | |
12 | eqid 2737 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemn4 39181 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 〈𝐺, ( I ↾ 𝑇)〉 = (〈𝐹, ( I ↾ 𝑇)〉(+g‘𝑈)〈𝐽, 𝑂〉)) |
14 | 13 | sneqd 4575 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → {〈𝐺, ( I ↾ 𝑇)〉} = {(〈𝐹, ( I ↾ 𝑇)〉(+g‘𝑈)〈𝐽, 𝑂〉)}) |
15 | 14 | fveq2d 6765 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) = (𝑁‘{(〈𝐹, ( I ↾ 𝑇)〉(+g‘𝑈)〈𝐽, 𝑂〉)})) |
16 | simp1 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | 5, 8, 16 | dvhlmod 39093 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑈 ∈ LMod) |
18 | 2, 3, 5, 4 | lhpocnel2 38002 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
19 | 18 | 3ad2ant1 1131 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
20 | simp2 1135 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
21 | 2, 3, 5, 6, 9 | ltrniotacl 38562 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
22 | 16, 19, 20, 21 | syl3anc 1369 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
23 | eqid 2737 | . . . . . 6 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
24 | 5, 6, 23 | tendoidcl 38752 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) |
25 | 24 | 3ad2ant1 1131 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) |
26 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
27 | 5, 6, 23, 8, 26 | dvhelvbasei 39071 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → 〈𝐹, ( I ↾ 𝑇)〉 ∈ (Base‘𝑈)) |
28 | 16, 22, 25, 27 | syl12anc 833 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 〈𝐹, ( I ↾ 𝑇)〉 ∈ (Base‘𝑈)) |
29 | 2, 3, 5, 6, 11 | ltrniotacl 38562 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐽 ∈ 𝑇) |
30 | 1, 5, 6, 23, 7 | tendo0cl 38773 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
31 | 30 | 3ad2ant1 1131 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
32 | 5, 6, 23, 8, 26 | dvhelvbasei 39071 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐽 ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → 〈𝐽, 𝑂〉 ∈ (Base‘𝑈)) |
33 | 16, 29, 31, 32 | syl12anc 833 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 〈𝐽, 𝑂〉 ∈ (Base‘𝑈)) |
34 | cdlemn4a.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
35 | cdlemn4a.s | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
36 | 26, 12, 34, 35 | lspsntri 20303 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ 〈𝐹, ( I ↾ 𝑇)〉 ∈ (Base‘𝑈) ∧ 〈𝐽, 𝑂〉 ∈ (Base‘𝑈)) → (𝑁‘{(〈𝐹, ( I ↾ 𝑇)〉(+g‘𝑈)〈𝐽, 𝑂〉)}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝐽, 𝑂〉}))) |
37 | 17, 28, 33, 36 | syl3anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑁‘{(〈𝐹, ( I ↾ 𝑇)〉(+g‘𝑈)〈𝐽, 𝑂〉)}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝐽, 𝑂〉}))) |
38 | 15, 37 | eqsstrd 3960 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝐽, 𝑂〉}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 {csn 4563 〈cop 4569 class class class wbr 5075 ↦ cmpt 5158 I cid 5484 ↾ cres 5587 ‘cfv 6423 ℩crio 7216 (class class class)co 7260 Basecbs 16856 +gcplusg 16906 lecple 16913 occoc 16914 LSSumclsm 19183 LModclmod 20067 LSpanclspn 20177 Atomscatm 37246 HLchlt 37333 LHypclh 37967 LTrncltrn 38084 TEndoctendo 38735 DVecHcdvh 39061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 ax-riotaBAD 36936 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-1st 7809 df-2nd 7810 df-tpos 8018 df-undef 8065 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-er 8461 df-map 8580 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-2 11982 df-3 11983 df-4 11984 df-5 11985 df-6 11986 df-n0 12180 df-z 12266 df-uz 12528 df-fz 13185 df-struct 16792 df-sets 16809 df-slot 16827 df-ndx 16839 df-base 16857 df-ress 16886 df-plusg 16919 df-mulr 16920 df-sca 16922 df-vsca 16923 df-0g 17096 df-proset 17957 df-poset 17975 df-plt 17992 df-lub 18008 df-glb 18009 df-join 18010 df-meet 18011 df-p0 18087 df-p1 18088 df-lat 18094 df-clat 18161 df-mgm 18270 df-sgrp 18319 df-mnd 18330 df-submnd 18375 df-grp 18524 df-minusg 18525 df-sbg 18526 df-subg 18696 df-cntz 18867 df-lsm 19185 df-cmn 19332 df-abl 19333 df-mgp 19665 df-ur 19682 df-ring 19729 df-oppr 19806 df-dvdsr 19827 df-unit 19828 df-invr 19858 df-dvr 19869 df-drng 19937 df-lmod 20069 df-lss 20138 df-lsp 20178 df-lvec 20309 df-oposet 37159 df-ol 37161 df-oml 37162 df-covers 37249 df-ats 37250 df-atl 37281 df-cvlat 37305 df-hlat 37334 df-llines 37481 df-lplanes 37482 df-lvols 37483 df-lines 37484 df-psubsp 37486 df-pmap 37487 df-padd 37779 df-lhyp 37971 df-laut 37972 df-ldil 38087 df-ltrn 38088 df-trl 38142 df-tendo 38738 df-edring 38740 df-dvech 39062 |
This theorem is referenced by: cdlemn5pre 39183 |
Copyright terms: Public domain | W3C validator |