Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn4a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 24-Feb-2014.) |
Ref | Expression |
---|---|
cdlemn4.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemn4.l | ⊢ ≤ = (le‘𝐾) |
cdlemn4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemn4.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
cdlemn4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemn4.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemn4.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
cdlemn4.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
cdlemn4.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
cdlemn4.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) |
cdlemn4.j | ⊢ 𝐽 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑅) |
cdlemn4a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
cdlemn4a.s | ⊢ ⊕ = (LSSum‘𝑈) |
Ref | Expression |
---|---|
cdlemn4a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝐽, 𝑂〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemn4.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemn4.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemn4.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | cdlemn4.p | . . . . 5 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
5 | cdlemn4.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemn4.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | cdlemn4.o | . . . . 5 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
8 | cdlemn4.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
9 | cdlemn4.f | . . . . 5 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | |
10 | cdlemn4.g | . . . . 5 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) | |
11 | cdlemn4.j | . . . . 5 ⊢ 𝐽 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑅) | |
12 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemn4 39139 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 〈𝐺, ( I ↾ 𝑇)〉 = (〈𝐹, ( I ↾ 𝑇)〉(+g‘𝑈)〈𝐽, 𝑂〉)) |
14 | 13 | sneqd 4570 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → {〈𝐺, ( I ↾ 𝑇)〉} = {(〈𝐹, ( I ↾ 𝑇)〉(+g‘𝑈)〈𝐽, 𝑂〉)}) |
15 | 14 | fveq2d 6760 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) = (𝑁‘{(〈𝐹, ( I ↾ 𝑇)〉(+g‘𝑈)〈𝐽, 𝑂〉)})) |
16 | simp1 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | 5, 8, 16 | dvhlmod 39051 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑈 ∈ LMod) |
18 | 2, 3, 5, 4 | lhpocnel2 37960 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
19 | 18 | 3ad2ant1 1131 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
20 | simp2 1135 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
21 | 2, 3, 5, 6, 9 | ltrniotacl 38520 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
22 | 16, 19, 20, 21 | syl3anc 1369 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
23 | eqid 2738 | . . . . . 6 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
24 | 5, 6, 23 | tendoidcl 38710 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) |
25 | 24 | 3ad2ant1 1131 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) |
26 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
27 | 5, 6, 23, 8, 26 | dvhelvbasei 39029 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → 〈𝐹, ( I ↾ 𝑇)〉 ∈ (Base‘𝑈)) |
28 | 16, 22, 25, 27 | syl12anc 833 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 〈𝐹, ( I ↾ 𝑇)〉 ∈ (Base‘𝑈)) |
29 | 2, 3, 5, 6, 11 | ltrniotacl 38520 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐽 ∈ 𝑇) |
30 | 1, 5, 6, 23, 7 | tendo0cl 38731 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
31 | 30 | 3ad2ant1 1131 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
32 | 5, 6, 23, 8, 26 | dvhelvbasei 39029 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐽 ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → 〈𝐽, 𝑂〉 ∈ (Base‘𝑈)) |
33 | 16, 29, 31, 32 | syl12anc 833 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 〈𝐽, 𝑂〉 ∈ (Base‘𝑈)) |
34 | cdlemn4a.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
35 | cdlemn4a.s | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
36 | 26, 12, 34, 35 | lspsntri 20274 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ 〈𝐹, ( I ↾ 𝑇)〉 ∈ (Base‘𝑈) ∧ 〈𝐽, 𝑂〉 ∈ (Base‘𝑈)) → (𝑁‘{(〈𝐹, ( I ↾ 𝑇)〉(+g‘𝑈)〈𝐽, 𝑂〉)}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝐽, 𝑂〉}))) |
37 | 17, 28, 33, 36 | syl3anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑁‘{(〈𝐹, ( I ↾ 𝑇)〉(+g‘𝑈)〈𝐽, 𝑂〉)}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝐽, 𝑂〉}))) |
38 | 15, 37 | eqsstrd 3955 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑁‘{〈𝐺, ( I ↾ 𝑇)〉}) ⊆ ((𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) ⊕ (𝑁‘{〈𝐽, 𝑂〉}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 〈cop 4564 class class class wbr 5070 ↦ cmpt 5153 I cid 5479 ↾ cres 5582 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 lecple 16895 occoc 16896 LSSumclsm 19154 LModclmod 20038 LSpanclspn 20148 Atomscatm 37204 HLchlt 37291 LHypclh 37925 LTrncltrn 38042 TEndoctendo 38693 DVecHcdvh 39019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tendo 38696 df-edring 38698 df-dvech 39020 |
This theorem is referenced by: cdlemn5pre 39141 |
Copyright terms: Public domain | W3C validator |