Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn4a Structured version   Visualization version   GIF version

Theorem cdlemn4a 38377
Description: Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
cdlemn4.b 𝐵 = (Base‘𝐾)
cdlemn4.l = (le‘𝐾)
cdlemn4.a 𝐴 = (Atoms‘𝐾)
cdlemn4.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn4.h 𝐻 = (LHyp‘𝐾)
cdlemn4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn4.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
cdlemn4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
cdlemn4.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn4.g 𝐺 = (𝑇 (𝑃) = 𝑅)
cdlemn4.j 𝐽 = (𝑇 (𝑄) = 𝑅)
cdlemn4a.n 𝑁 = (LSpan‘𝑈)
cdlemn4a.s = (LSSum‘𝑈)
Assertion
Ref Expression
cdlemn4a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}) ⊆ ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝐽, 𝑂⟩})))
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑃,   𝑄,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   ()   𝑈()   𝐹()   𝐺()   𝐽()   𝑁()   𝑂()

Proof of Theorem cdlemn4a
StepHypRef Expression
1 cdlemn4.b . . . . 5 𝐵 = (Base‘𝐾)
2 cdlemn4.l . . . . 5 = (le‘𝐾)
3 cdlemn4.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 cdlemn4.p . . . . 5 𝑃 = ((oc‘𝐾)‘𝑊)
5 cdlemn4.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 cdlemn4.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdlemn4.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
8 cdlemn4.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 cdlemn4.f . . . . 5 𝐹 = (𝑇 (𝑃) = 𝑄)
10 cdlemn4.g . . . . 5 𝐺 = (𝑇 (𝑃) = 𝑅)
11 cdlemn4.j . . . . 5 𝐽 = (𝑇 (𝑄) = 𝑅)
12 eqid 2821 . . . . 5 (+g𝑈) = (+g𝑈)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemn4 38376 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨𝐹, ( I ↾ 𝑇)⟩(+g𝑈)⟨𝐽, 𝑂⟩))
1413sneqd 4552 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → {⟨𝐺, ( I ↾ 𝑇)⟩} = {(⟨𝐹, ( I ↾ 𝑇)⟩(+g𝑈)⟨𝐽, 𝑂⟩)})
1514fveq2d 6647 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}) = (𝑁‘{(⟨𝐹, ( I ↾ 𝑇)⟩(+g𝑈)⟨𝐽, 𝑂⟩)}))
16 simp1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
175, 8, 16dvhlmod 38288 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑈 ∈ LMod)
182, 3, 5, 4lhpocnel2 37197 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
19183ad2ant1 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
20 simp2 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
212, 3, 5, 6, 9ltrniotacl 37757 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
2216, 19, 20, 21syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹𝑇)
23 eqid 2821 . . . . . 6 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
245, 6, 23tendoidcl 37947 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
25243ad2ant1 1130 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
26 eqid 2821 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
275, 6, 23, 8, 26dvhelvbasei 38266 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
2816, 22, 25, 27syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
292, 3, 5, 6, 11ltrniotacl 37757 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐽𝑇)
301, 5, 6, 23, 7tendo0cl 37968 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
31303ad2ant1 1130 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
325, 6, 23, 8, 26dvhelvbasei 38266 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝐽, 𝑂⟩ ∈ (Base‘𝑈))
3316, 29, 31, 32syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨𝐽, 𝑂⟩ ∈ (Base‘𝑈))
34 cdlemn4a.n . . . 4 𝑁 = (LSpan‘𝑈)
35 cdlemn4a.s . . . 4 = (LSSum‘𝑈)
3626, 12, 34, 35lspsntri 19845 . . 3 ((𝑈 ∈ LMod ∧ ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈) ∧ ⟨𝐽, 𝑂⟩ ∈ (Base‘𝑈)) → (𝑁‘{(⟨𝐹, ( I ↾ 𝑇)⟩(+g𝑈)⟨𝐽, 𝑂⟩)}) ⊆ ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝐽, 𝑂⟩})))
3717, 28, 33, 36syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑁‘{(⟨𝐹, ( I ↾ 𝑇)⟩(+g𝑈)⟨𝐽, 𝑂⟩)}) ⊆ ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝐽, 𝑂⟩})))
3815, 37eqsstrd 3981 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑁‘{⟨𝐺, ( I ↾ 𝑇)⟩}) ⊆ ((𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) (𝑁‘{⟨𝐽, 𝑂⟩})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wss 3910  {csn 4540  cop 4546   class class class wbr 5039  cmpt 5119   I cid 5432  cres 5530  cfv 6328  crio 7087  (class class class)co 7130  Basecbs 16462  +gcplusg 16544  lecple 16551  occoc 16552  LSSumclsm 18738  LModclmod 19610  LSpanclspn 19719  Atomscatm 36441  HLchlt 36528  LHypclh 37162  LTrncltrn 37279  TEndoctendo 37930  DVecHcdvh 38256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-riotaBAD 36131
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-tpos 7867  df-undef 7914  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-0g 16694  df-proset 17517  df-poset 17535  df-plt 17547  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-p0 17628  df-p1 17629  df-lat 17635  df-clat 17697  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-submnd 17936  df-grp 18085  df-minusg 18086  df-sbg 18087  df-subg 18255  df-cntz 18426  df-lsm 18740  df-cmn 18887  df-abl 18888  df-mgp 19219  df-ur 19231  df-ring 19278  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-dvr 19412  df-drng 19480  df-lmod 19612  df-lss 19680  df-lsp 19720  df-lvec 19851  df-oposet 36354  df-ol 36356  df-oml 36357  df-covers 36444  df-ats 36445  df-atl 36476  df-cvlat 36500  df-hlat 36529  df-llines 36676  df-lplanes 36677  df-lvols 36678  df-lines 36679  df-psubsp 36681  df-pmap 36682  df-padd 36974  df-lhyp 37166  df-laut 37167  df-ldil 37282  df-ltrn 37283  df-trl 37337  df-tendo 37933  df-edring 37935  df-dvech 38257
This theorem is referenced by:  cdlemn5pre  38378
  Copyright terms: Public domain W3C validator