MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt0neg1d Structured version   Visualization version   GIF version

Theorem lt0neg1d 11859
Description: Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
lt0neg1d (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))

Proof of Theorem lt0neg1d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 lt0neg1 11796 . 2 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
31, 2syl 17 1 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108   class class class wbr 5166  cr 11183  0cc0 11184   < clt 11324  -cneg 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  recgt0  12140  prodge0rd  13164  expneg  14120  discr1  14288  bitsfzo  16481  subgmulg  19180  xrhmeo  24996  mbfmulc2lem  25701  mbfposr  25706  dvferm2lem  26044  dvferm2  26045  sincosq4sgn  26561  tanabsge  26566  sinq34lt0t  26569  tanord  26598  argimlt0  26673  logdmnrp  26701  atanlogsub  26977  atantan  26984  lgsdilem  27386  ostth3  27700  expgt0b  32820  sgnmul  34507  fdvneggt  34577  oexpreposd  42309  elpell14qr2  42818  jm2.24  42920  mulltgt0  44922  lt0neg1dd  45303  fourierdlem43  46071  fourierdlem44  46072  fourierdlem92  46119  fourierdlem109  46136  requad01  47495
  Copyright terms: Public domain W3C validator