MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspssid Structured version   Visualization version   GIF version

Theorem rspssid 20848
Description: The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
rspcl.k 𝐾 = (RSpan‘𝑅)
rspcl.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
rspssid ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))

Proof of Theorem rspssid
StepHypRef Expression
1 rlmlmod 20827 . 2 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
2 rspcl.b . . . 4 𝐵 = (Base‘𝑅)
3 rlmbas 20817 . . . 4 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
42, 3eqtri 2761 . . 3 𝐵 = (Base‘(ringLMod‘𝑅))
5 rspcl.k . . . 4 𝐾 = (RSpan‘𝑅)
6 rspval 20815 . . . 4 (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))
75, 6eqtri 2761 . . 3 𝐾 = (LSpan‘(ringLMod‘𝑅))
84, 7lspssid 20596 . 2 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
91, 8sylan 581 1 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wss 3949  cfv 6544  Basecbs 17144  Ringcrg 20056  LModclmod 20471  LSpanclspn 20582  ringLModcrglmod 20782  RSpancrsp 20784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-subg 19003  df-mgp 19988  df-ur 20005  df-ring 20058  df-subrg 20317  df-lmod 20473  df-lss 20543  df-lsp 20583  df-sra 20785  df-rgmod 20786  df-rsp 20788
This theorem is referenced by:  rsp1  20849  lidldvgen  20893  rspsnid  32485  rspidlid  32487  dvdsrspss  32491  unitpidl1  32542  mxidlirredi  32587  mxidlirred  32588  qsdrngilem  32608  zarclsun  32850  zarclsiin  32851  lnr2i  41858  hbtlem6  41871  hbt  41872
  Copyright terms: Public domain W3C validator